metadata
paper: arxiv:2109.03794
size_categories:
- n<1K
task_categories:
- token-classification
language:
- en
tags:
- pipeline-numbers
- ner
- p-and-id
Digitize-PID: Pipeline numbers (NER)
Note: I am not the author of this dataset
Named Entity Recognition dataset for extracting pipeline numbers from full text of P&ID (Piping and Instrumentation Diagram) documents.
Dataset Details
Dataset Description
Pipeline numbers are structured identifiers in engineering documents:
- Example Format:
A-123-BC(3-5 segments with a separator such as-,, or_) - Use case: Automated extraction from P&ID document text
- Domain: Process and piping industry
Data Fields
id: Unique example identifiertokens: List of tokenized words/punctuationlabels: BIO tags for each tokenpipeline_numbers: Ground truth pipeline numbersfull_text: Original text
Label Schema
| Label | Meaning |
|---|---|
B-PIPE |
Beginning of pipeline number |
I-PIPE |
Inside pipeline number |
O |
Outside (not pipeline number) |
Splits
Data was randomly split.
| Split | Examples |
|---|---|
| train | 400 |
| validation | 50 |
| test | 50 |
Data Creation
- Source: Digitize-PID
- Annotation: Automatic BIO tagging with character-level alignment
Usage
With Hugging Face Datasets
from datasets import load_dataset
dataset = load_dataset("hamzas/digitize-pid-ner")
print(dataset)
# Access example
example = dataset['train'][0]
print(example['tokens'])
print(example['labels'])