--- paper: arxiv:2109.03794 size_categories: - n<1K task_categories: - token-classification language: - en tags: - pipeline-numbers - ner - p-and-id --- # Digitize-PID: Pipeline numbers (NER) **Note**: *I am not the author of this dataset* Named Entity Recognition dataset for extracting pipeline numbers from full text of P&ID (Piping and Instrumentation Diagram) documents. ## Dataset Details ### Dataset Description Pipeline numbers are structured identifiers in engineering documents: - Example Format: `A-123-BC` (3-5 segments with a separator such as `-`, ` `, or `_`) - Use case: Automated extraction from P&ID document text - Domain: Process and piping industry ### Data Fields - `id`: Unique example identifier - `tokens`: List of tokenized words/punctuation - `labels`: BIO tags for each token - `pipeline_numbers`: Ground truth pipeline numbers - `full_text`: Original text ### Label Schema | Label | Meaning | |-------|---------| | `B-PIPE` | Beginning of pipeline number | | `I-PIPE` | Inside pipeline number | | `O` | Outside (not pipeline number) | ### Splits Data was randomly split. | Split | Examples | |-------|----------| | train | 400 | | validation | 50 | | test | 50 | ### Data Creation - **Source:** Digitize-PID - **Annotation:** Automatic BIO tagging with character-level alignment ## Usage ### With Hugging Face Datasets ```python from datasets import load_dataset dataset = load_dataset("hamzas/digitize-pid-ner") print(dataset) # Access example example = dataset['train'][0] print(example['tokens']) print(example['labels']) ```