|
|
--- |
|
|
library_name: transformers |
|
|
pipeline_tag: text-generation |
|
|
inference: true |
|
|
widget: |
|
|
- text: Hello! |
|
|
example_title: Hello world |
|
|
group: Python |
|
|
base_model: |
|
|
- moonshotai/Kimi-Linear-48B-A3B-Instruct |
|
|
--- |
|
|
|
|
|
This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [moonshotai/Kimi-Linear-48B-A3B-Instruct](https://huggingface.co/moonshotai/Kimi-Linear-48B-A3B-Instruct). |
|
|
|
|
|
### Example usage: |
|
|
|
|
|
- vLLM |
|
|
|
|
|
```bash |
|
|
vllm serve yujiepan/kimi-linear-tiny-random --trust-remote-code |
|
|
``` |
|
|
|
|
|
- Transformers |
|
|
|
|
|
```python |
|
|
# tested on transformers==4.57.1 |
|
|
import torch |
|
|
import transformers |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
model_id = "yujiepan/kimi-linear-tiny-random" |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
model_id, |
|
|
dtype=torch.bfloat16, |
|
|
device_map="cuda", |
|
|
trust_remote_code=True |
|
|
) |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) |
|
|
|
|
|
messages = [ |
|
|
{"role": "system", "content": "You are a helpful assistant provided by Moonshot-AI."}, |
|
|
{"role": "user", "content": "Is 123 a prime?"} |
|
|
] |
|
|
input_ids = tokenizer.apply_chat_template( |
|
|
messages, |
|
|
add_generation_prompt=True, |
|
|
return_tensors="pt", |
|
|
tokenize=True, |
|
|
).to(model.device) |
|
|
print(input_ids) |
|
|
generated_ids = model.generate(inputs=input_ids, max_new_tokens=500) |
|
|
response = tokenizer.batch_decode(generated_ids)[0] |
|
|
print(response) |
|
|
``` |
|
|
|
|
|
### Codes to create this repo: |
|
|
|
|
|
```python |
|
|
import json |
|
|
from pathlib import Path |
|
|
|
|
|
import accelerate |
|
|
import torch |
|
|
from huggingface_hub import file_exists, hf_hub_download |
|
|
from transformers import ( |
|
|
AutoConfig, |
|
|
AutoModelForCausalLM, |
|
|
AutoProcessor, |
|
|
AutoTokenizer, |
|
|
GenerationConfig, |
|
|
set_seed, |
|
|
) |
|
|
|
|
|
source_model_id = "moonshotai/Kimi-Linear-48B-A3B-Instruct" |
|
|
save_folder = "/tmp/yujiepan/kimi-linear-tiny-random" |
|
|
|
|
|
Path(save_folder).mkdir(parents=True, exist_ok=True) |
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
|
source_model_id, trust_remote_code=True) |
|
|
tokenizer.save_pretrained(save_folder) |
|
|
with open(hf_hub_download(source_model_id, filename='tokenizer_config.json', repo_type='model'), 'r', encoding='utf-8') as f: |
|
|
tokenizer_config_json = json.load(f) |
|
|
tokenizer_config_json['auto_map']['AutoTokenizer'][0] = f'{source_model_id}--' + \ |
|
|
tokenizer_config_json["auto_map"]["AutoTokenizer"][0] |
|
|
with open(f"{save_folder}/tokenizer_config.json", "w", encoding='utf-8') as f: |
|
|
json.dump(tokenizer_config_json, f, indent=2) |
|
|
# hf_hub_download(source_model_id, filename='tiktoken.model', repo_type='model', |
|
|
# local_dir=save_folder, local_dir_use_symlinks=True, cache_dir='/tmp/') |
|
|
|
|
|
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: |
|
|
config_json = json.load(f) |
|
|
for k, v in config_json['auto_map'].items(): |
|
|
config_json['auto_map'][k] = f'{source_model_id}--{v}' |
|
|
config_json.update({ |
|
|
"head_dim": 32, |
|
|
"hidden_size": 8, |
|
|
"intermediate_size": 32, |
|
|
"linear_attn_config": { |
|
|
"full_attn_layers": [4], |
|
|
"head_dim": 32, |
|
|
"kda_layers": [1, 2, 3], |
|
|
"num_heads": 8, |
|
|
"short_conv_kernel_size": 4, |
|
|
}, |
|
|
"num_attention_heads": 8, |
|
|
"num_key_value_heads": 8, |
|
|
"moe_intermediate_size": 32, |
|
|
"num_hidden_layers": 5, |
|
|
}) |
|
|
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: |
|
|
json.dump(config_json, f, indent=2) |
|
|
|
|
|
config = AutoConfig.from_pretrained( |
|
|
save_folder, |
|
|
trust_remote_code=True, |
|
|
) |
|
|
print(config) |
|
|
torch.set_default_dtype(torch.bfloat16) |
|
|
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) |
|
|
torch.set_default_dtype(torch.float32) |
|
|
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): |
|
|
model.generation_config = GenerationConfig.from_pretrained( |
|
|
source_model_id, trust_remote_code=True, |
|
|
) |
|
|
set_seed(42) |
|
|
model = model.cpu() |
|
|
n_parms = sum(p.numel() for p in model.parameters()) |
|
|
with torch.no_grad(): |
|
|
for name, p in sorted(model.named_parameters()): |
|
|
torch.nn.init.normal_(p, 0, 0.1) |
|
|
print(name, p.shape, (p.numel() / n_parms * 100), '%') |
|
|
model.save_pretrained(save_folder) |
|
|
|
|
|
with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f: |
|
|
config_json = json.load(f) |
|
|
config_json['auto_map'] = {k: f'{source_model_id}--' + v.split( |
|
|
'--')[-1] for k, v in config_json['auto_map'].items()} |
|
|
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: |
|
|
json.dump(config_json, f, indent=2) |
|
|
for python_file in Path(save_folder).glob('*.py'): |
|
|
python_file.unlink() |
|
|
``` |
|
|
|
|
|
### Printing the model: |
|
|
|
|
|
```text |
|
|
KimiLinearForCausalLM( |
|
|
(model): KimiLinearModel( |
|
|
(embed_tokens): Embedding(163840, 8, padding_idx=163839) |
|
|
(layers): ModuleList( |
|
|
(0): KimiDecoderLayer( |
|
|
(self_attn): KimiDeltaAttention( |
|
|
(q_proj): Linear(in_features=8, out_features=256, bias=False) |
|
|
(k_proj): Linear(in_features=8, out_features=256, bias=False) |
|
|
(v_proj): Linear(in_features=8, out_features=256, bias=False) |
|
|
(q_conv1d): ShortConvolution(256, 256, kernel_size=(4,), stride=(1,), padding=(3,), groups=256, bias=False, activation=silu, backend=triton) |
|
|
(k_conv1d): ShortConvolution(256, 256, kernel_size=(4,), stride=(1,), padding=(3,), groups=256, bias=False, activation=silu, backend=triton) |
|
|
(v_conv1d): ShortConvolution(256, 256, kernel_size=(4,), stride=(1,), padding=(3,), groups=256, bias=False, activation=silu, backend=triton) |
|
|
(f_a_proj): Linear(in_features=8, out_features=32, bias=False) |
|
|
(f_b_proj): Linear(in_features=32, out_features=256, bias=False) |
|
|
(b_proj): Linear(in_features=8, out_features=8, bias=False) |
|
|
(g_a_proj): Linear(in_features=8, out_features=32, bias=False) |
|
|
(g_b_proj): Linear(in_features=32, out_features=256, bias=False) |
|
|
(o_norm): FusedRMSNormGated(32, eps=1e-05, activation=sigmoid) |
|
|
(o_proj): Linear(in_features=256, out_features=8, bias=False) |
|
|
) |
|
|
(mlp): KimiMLP( |
|
|
(gate_proj): Linear(in_features=8, out_features=32, bias=False) |
|
|
(up_proj): Linear(in_features=8, out_features=32, bias=False) |
|
|
(down_proj): Linear(in_features=32, out_features=8, bias=False) |
|
|
(act_fn): SiLUActivation() |
|
|
) |
|
|
(input_layernorm): KimiRMSNorm() |
|
|
(post_attention_layernorm): KimiRMSNorm() |
|
|
) |
|
|
(1-2): 2 x KimiDecoderLayer( |
|
|
(self_attn): KimiDeltaAttention( |
|
|
(q_proj): Linear(in_features=8, out_features=256, bias=False) |
|
|
(k_proj): Linear(in_features=8, out_features=256, bias=False) |
|
|
(v_proj): Linear(in_features=8, out_features=256, bias=False) |
|
|
(q_conv1d): ShortConvolution(256, 256, kernel_size=(4,), stride=(1,), padding=(3,), groups=256, bias=False, activation=silu, backend=triton) |
|
|
(k_conv1d): ShortConvolution(256, 256, kernel_size=(4,), stride=(1,), padding=(3,), groups=256, bias=False, activation=silu, backend=triton) |
|
|
(v_conv1d): ShortConvolution(256, 256, kernel_size=(4,), stride=(1,), padding=(3,), groups=256, bias=False, activation=silu, backend=triton) |
|
|
(f_a_proj): Linear(in_features=8, out_features=32, bias=False) |
|
|
(f_b_proj): Linear(in_features=32, out_features=256, bias=False) |
|
|
(b_proj): Linear(in_features=8, out_features=8, bias=False) |
|
|
(g_a_proj): Linear(in_features=8, out_features=32, bias=False) |
|
|
(g_b_proj): Linear(in_features=32, out_features=256, bias=False) |
|
|
(o_norm): FusedRMSNormGated(32, eps=1e-05, activation=sigmoid) |
|
|
(o_proj): Linear(in_features=256, out_features=8, bias=False) |
|
|
) |
|
|
(block_sparse_moe): KimiSparseMoeBlock( |
|
|
(experts): ModuleList( |
|
|
(0-255): 256 x KimiBlockSparseMLP( |
|
|
(w1): Linear(in_features=8, out_features=32, bias=False) |
|
|
(w2): Linear(in_features=32, out_features=8, bias=False) |
|
|
(w3): Linear(in_features=8, out_features=32, bias=False) |
|
|
(act_fn): SiLUActivation() |
|
|
) |
|
|
) |
|
|
(gate): KimiMoEGate() |
|
|
(shared_experts): KimiMLP( |
|
|
(gate_proj): Linear(in_features=8, out_features=32, bias=False) |
|
|
(up_proj): Linear(in_features=8, out_features=32, bias=False) |
|
|
(down_proj): Linear(in_features=32, out_features=8, bias=False) |
|
|
(act_fn): SiLUActivation() |
|
|
) |
|
|
) |
|
|
(input_layernorm): KimiRMSNorm() |
|
|
(post_attention_layernorm): KimiRMSNorm() |
|
|
) |
|
|
(3-4): 2 x KimiDecoderLayer( |
|
|
(self_attn): KimiMLAAttention( |
|
|
(q_proj): Linear(in_features=8, out_features=1536, bias=False) |
|
|
(kv_a_proj_with_mqa): Linear(in_features=8, out_features=576, bias=False) |
|
|
(kv_a_layernorm): KimiRMSNorm() |
|
|
(kv_b_proj): Linear(in_features=512, out_features=2048, bias=False) |
|
|
(o_proj): Linear(in_features=1024, out_features=8, bias=False) |
|
|
) |
|
|
(block_sparse_moe): KimiSparseMoeBlock( |
|
|
(experts): ModuleList( |
|
|
(0-255): 256 x KimiBlockSparseMLP( |
|
|
(w1): Linear(in_features=8, out_features=32, bias=False) |
|
|
(w2): Linear(in_features=32, out_features=8, bias=False) |
|
|
(w3): Linear(in_features=8, out_features=32, bias=False) |
|
|
(act_fn): SiLUActivation() |
|
|
) |
|
|
) |
|
|
(gate): KimiMoEGate() |
|
|
(shared_experts): KimiMLP( |
|
|
(gate_proj): Linear(in_features=8, out_features=32, bias=False) |
|
|
(up_proj): Linear(in_features=8, out_features=32, bias=False) |
|
|
(down_proj): Linear(in_features=32, out_features=8, bias=False) |
|
|
(act_fn): SiLUActivation() |
|
|
) |
|
|
) |
|
|
(input_layernorm): KimiRMSNorm() |
|
|
(post_attention_layernorm): KimiRMSNorm() |
|
|
) |
|
|
) |
|
|
(norm): KimiRMSNorm() |
|
|
) |
|
|
(lm_head): Linear(in_features=8, out_features=163840, bias=False) |
|
|
) |
|
|
``` |