phobert-hsd / README.md
AnnyNguyen's picture
Create README.md
844b4cd verified
metadata
language: vi
tags:
  - hate-speech-detection
  - vietnamese
  - phobert
license: apache-2.0
datasets:
  - VN-HSD
metrics:
  - accuracy
  - f1
model-index:
  - name: phobert-hsd
    results:
      - task:
          type: text-classification
          name: Hate Speech Detection
        dataset:
          name: VN-HSD
          type: custom
        metrics:
          - name: Accuracy
            type: accuracy
            value: <INSERT_ACCURACY>
          - name: F1 Score
            type: f1
            value: <INSERT_F1_SCORE>
base_model:
  - vinai/phobert-base
pipeline_tag: text-classification

PhoBERT‑HSD: Hate Speech Detection for Vietnamese Text

Fine‑tuned from vinai/phobert-base on the VN‑HSD dataset.

Model Details

  • Base Model: vinai/phobert-base
  • Dataset: VN‑HSD (ViSoLex‑HSD unified hate speech corpus)
  • Fine‑tuning: HuggingFace Transformers

Hyperparameters

  • Batch size: 32
  • Learning rate: 5e-5
  • Epochs: 100
  • Max sequence length: 256

Results

  • Accuracy: <INSERT_ACCURACY>
  • F1 Score: <INSERT_F1_SCORE>

Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("visolex/phobert-hsd")
model = AutoModelForSequenceClassification.from_pretrained("visolex/phobert-hsd")

text = "Đừng nói những lời thô tục như vậy!"
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=256)
pred = model(**inputs).logits.argmax(dim=-1).item()
print(f"Label: {['CLEAN','OFFENSIVE','HATE'][pred]}")