MoodSense Mood Detection Model

Fine-tuned model for real-time mood detection from speech transcripts.

Model Details

  • Base Model: google/gemma-3-1b-it
  • Format: GGUF (Q4_K_M quantization)
  • Size: ~518 MB
  • Use Case: Emotion detection from text with function calling

Supported Emotions

  • joy
  • sadness
  • anger
  • fear
  • surprise
  • disgust
  • neutral

Usage

This model is designed to work with MoodSense, a privacy-first mood detection application.

With llama.cpp

./main -m moodsense-mood-q4-k-m.gguf -p "Analyze the emotion: I'm so happy today!"

With node-llama-cpp

import { getLlama } from 'node-llama-cpp';

const llama = await getLlama();
const model = await llama.loadModel({ modelPath: 'moodsense-mood-q4-k-m.gguf' });

Output Format

The model outputs function calls in the format:

{
  "name": "update_mood",
  "arguments": {
    "emotion": "joy",
    "intensity": 0.8,
    "sentiment": "positive"
  }
}

Training

Fine-tuned using QLoRA on curated emotion datasets including:

  • GoEmotions (Reddit comments)
  • DailyDialog
  • EmpatheticDialogues
  • Custom conversational data

License

Apache 2.0

Downloads last month
140
GGUF
Model size
0.3B params
Architecture
gemma3
Hardware compatibility
Log In to view the estimation

16-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for sweetpapa/moodsense-mood

Quantized
(145)
this model