MoodSense Mood Detection Model
Fine-tuned model for real-time mood detection from speech transcripts.
Model Details
- Base Model: google/gemma-3-1b-it
- Format: GGUF (Q4_K_M quantization)
- Size: ~518 MB
- Use Case: Emotion detection from text with function calling
Supported Emotions
- joy
- sadness
- anger
- fear
- surprise
- disgust
- neutral
Usage
This model is designed to work with MoodSense, a privacy-first mood detection application.
With llama.cpp
./main -m moodsense-mood-q4-k-m.gguf -p "Analyze the emotion: I'm so happy today!"
With node-llama-cpp
import { getLlama } from 'node-llama-cpp';
const llama = await getLlama();
const model = await llama.loadModel({ modelPath: 'moodsense-mood-q4-k-m.gguf' });
Output Format
The model outputs function calls in the format:
{
"name": "update_mood",
"arguments": {
"emotion": "joy",
"intensity": 0.8,
"sentiment": "positive"
}
}
Training
Fine-tuned using QLoRA on curated emotion datasets including:
- GoEmotions (Reddit comments)
- DailyDialog
- EmpatheticDialogues
- Custom conversational data
License
Apache 2.0
- Downloads last month
- 140
Hardware compatibility
Log In
to view the estimation
16-bit