Spaces:
Running
on
Zero
Running
on
Zero
wrap aot packages in lazy torch module
Browse files
app.py
CHANGED
|
@@ -4,63 +4,67 @@ import torch._inductor
|
|
| 4 |
import spaces
|
| 5 |
from char_tokenizers import GermanCharsTokenizer
|
| 6 |
|
| 7 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
TOKENIZER = GermanCharsTokenizer()
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
|
|
|
|
| 12 |
"Caro": {
|
| 13 |
-
"encoder": "aot_package/caro_fastpitch_encoder.pt2",
|
| 14 |
-
"decoder": "aot_package/caro_fastpitch_decoder.pt2",
|
| 15 |
-
"vocoder": "aot_package/caro_hifigan.pt2",
|
| 16 |
},
|
| 17 |
"Karlsson": {
|
| 18 |
-
"encoder": "aot_package/karlsson_fastpitch_encoder.pt2",
|
| 19 |
-
"decoder": "aot_package/karlsson_fastpitch_decoder.pt2",
|
| 20 |
-
"vocoder": "aot_package/karlsson_hifigan.pt2",
|
| 21 |
},
|
| 22 |
}
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
aot_sessions = {}
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
@spaces.GPU(duration=60)
|
| 29 |
-
def load_models():
|
| 30 |
-
"""Load AOT models on GPU."""
|
| 31 |
-
global aot_sessions
|
| 32 |
-
|
| 33 |
-
if aot_sessions: # Already loaded
|
| 34 |
-
return
|
| 35 |
-
|
| 36 |
-
print("Loading AOT models for GPU...")
|
| 37 |
-
for voice_name, paths in AOT_MODELS.items():
|
| 38 |
-
print(f"Loading {voice_name} AOT models...")
|
| 39 |
-
aot_sessions[voice_name] = {
|
| 40 |
-
"encoder": torch._inductor.aoti_load_package(paths["encoder"]),
|
| 41 |
-
"decoder": torch._inductor.aoti_load_package(paths["decoder"]),
|
| 42 |
-
"vocoder": torch._inductor.aoti_load_package(paths["vocoder"]),
|
| 43 |
-
}
|
| 44 |
-
print("AOT models loaded successfully!")
|
| 45 |
-
|
| 46 |
-
|
| 47 |
@spaces.GPU(duration=60)
|
| 48 |
def synthesize_speech(text: str, voice: str, pace: float = 1.0):
|
| 49 |
"""
|
| 50 |
-
Synthesize speech
|
| 51 |
-
|
| 52 |
-
Args:
|
| 53 |
-
text: Input text to synthesize
|
| 54 |
-
voice: Voice to use (Caro or Karlsson)
|
| 55 |
-
pace: Speaking rate (1.0 is normal, <1.0 is slower, >1.0 is faster)
|
| 56 |
-
|
| 57 |
-
Returns:
|
| 58 |
-
Tuple of (sample_rate, audio_array)
|
| 59 |
"""
|
| 60 |
-
# Load models if not already loaded
|
| 61 |
-
if not aot_sessions:
|
| 62 |
-
load_models()
|
| 63 |
-
|
| 64 |
if not text.strip():
|
| 65 |
return None
|
| 66 |
|
|
@@ -69,22 +73,25 @@ def synthesize_speech(text: str, voice: str, pace: float = 1.0):
|
|
| 69 |
tokens_tensor = torch.tensor([tokens], dtype=torch.int64).to("cuda")
|
| 70 |
|
| 71 |
# Prepare control parameters
|
| 72 |
-
pitch_tensor = torch.zeros_like(tokens_tensor, dtype=torch.float32)
|
| 73 |
-
pace_tensor = torch.ones_like(tokens_tensor, dtype=torch.float32) * pace
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
with torch.inference_mode():
|
| 76 |
-
# Run
|
| 77 |
-
encoder = aot_sessions[voice]["encoder"]
|
| 78 |
len_regulated, dec_lens, spk_emb = encoder(
|
| 79 |
tokens_tensor, pitch_tensor, pace_tensor
|
| 80 |
)
|
| 81 |
|
| 82 |
-
# Run
|
| 83 |
-
decoder = aot_sessions[voice]["decoder"]
|
| 84 |
spec = decoder(len_regulated, dec_lens, spk_emb)
|
| 85 |
|
| 86 |
-
# Run
|
| 87 |
-
vocoder = aot_sessions[voice]["vocoder"]
|
| 88 |
audio = vocoder(spec)
|
| 89 |
|
| 90 |
# Convert to numpy and return
|
|
@@ -94,15 +101,12 @@ def synthesize_speech(text: str, voice: str, pace: float = 1.0):
|
|
| 94 |
return (sample_rate, audio_array)
|
| 95 |
|
| 96 |
|
| 97 |
-
#
|
| 98 |
with gr.Blocks(title="German TTS - Caro & Karlsson") as demo:
|
| 99 |
gr.Markdown(
|
| 100 |
"""
|
| 101 |
# 🎙️ German Text-to-Speech
|
| 102 |
-
|
| 103 |
Generate German speech using two different voices: **Caro** and **Karlsson**.
|
| 104 |
-
|
| 105 |
-
Enter your German text below and select a voice to synthesize speech.
|
| 106 |
"""
|
| 107 |
)
|
| 108 |
|
|
@@ -110,54 +114,20 @@ with gr.Blocks(title="German TTS - Caro & Karlsson") as demo:
|
|
| 110 |
with gr.Column():
|
| 111 |
text_input = gr.Textbox(
|
| 112 |
label="Text to synthesize",
|
| 113 |
-
placeholder="Geben Sie hier Ihren deutschen Text ein...",
|
| 114 |
-
lines=5,
|
| 115 |
value="Hallo! Willkommen zur deutschen Sprachsynthese.",
|
|
|
|
| 116 |
)
|
| 117 |
-
|
| 118 |
voice_dropdown = gr.Dropdown(
|
| 119 |
choices=["Caro", "Karlsson"], label="Voice", value="Karlsson"
|
| 120 |
)
|
| 121 |
-
|
| 122 |
pace_slider = gr.Slider(
|
| 123 |
-
minimum=0.5,
|
| 124 |
-
maximum=2.0,
|
| 125 |
-
value=1.0,
|
| 126 |
-
step=0.1,
|
| 127 |
-
label="Speaking Rate",
|
| 128 |
-
info="1.0 is normal speed",
|
| 129 |
)
|
| 130 |
-
|
| 131 |
generate_btn = gr.Button("Generate Speech 🔊", variant="primary")
|
| 132 |
|
| 133 |
with gr.Column():
|
| 134 |
audio_output = gr.Audio(label="Generated Audio", type="numpy")
|
| 135 |
|
| 136 |
-
gr.Examples(
|
| 137 |
-
examples=[
|
| 138 |
-
["Guten Tag! Wie geht es Ihnen heute?", "Caro", 1.0],
|
| 139 |
-
[
|
| 140 |
-
"Die Wissenschaft hat in den letzten Jahren große Fortschritte gemacht.",
|
| 141 |
-
"Karlsson",
|
| 142 |
-
1.0,
|
| 143 |
-
],
|
| 144 |
-
[
|
| 145 |
-
"Es war einmal ein kleines Mädchen, das durch den Wald spazierte.",
|
| 146 |
-
"Caro",
|
| 147 |
-
0.9,
|
| 148 |
-
],
|
| 149 |
-
[
|
| 150 |
-
"Berlin ist die Hauptstadt und zugleich ein Land der Bundesrepublik Deutschland.",
|
| 151 |
-
"Karlsson",
|
| 152 |
-
1.0,
|
| 153 |
-
],
|
| 154 |
-
],
|
| 155 |
-
inputs=[text_input, voice_dropdown, pace_slider],
|
| 156 |
-
outputs=audio_output,
|
| 157 |
-
fn=synthesize_speech,
|
| 158 |
-
cache_examples=False,
|
| 159 |
-
)
|
| 160 |
-
|
| 161 |
generate_btn.click(
|
| 162 |
fn=synthesize_speech,
|
| 163 |
inputs=[text_input, voice_dropdown, pace_slider],
|
|
@@ -165,4 +135,4 @@ with gr.Blocks(title="German TTS - Caro & Karlsson") as demo:
|
|
| 165 |
)
|
| 166 |
|
| 167 |
if __name__ == "__main__":
|
| 168 |
-
demo.launch()
|
|
|
|
| 4 |
import spaces
|
| 5 |
from char_tokenizers import GermanCharsTokenizer
|
| 6 |
|
| 7 |
+
# --- 1. Define a Wrapper for Lazy Loading ---
|
| 8 |
+
class LazyAotPackage(torch.nn.Module):
|
| 9 |
+
"""
|
| 10 |
+
A wrapper that holds the path to an AOT package and loads it
|
| 11 |
+
to the GPU only when forward() is called.
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
def __init__(self, package_path):
|
| 15 |
+
super().__init__()
|
| 16 |
+
self.package_path = package_path
|
| 17 |
+
self.runner = None
|
| 18 |
+
|
| 19 |
+
def forward(self, *args, **kwargs):
|
| 20 |
+
# We are now inside the @spaces.GPU decorated function.
|
| 21 |
+
# Valid GPU context exists.
|
| 22 |
+
|
| 23 |
+
# If runner is not loaded, load it now.
|
| 24 |
+
if self.runner is None:
|
| 25 |
+
# Load directly to the active CUDA device
|
| 26 |
+
self.runner = torch._inductor.aoti_load_package(
|
| 27 |
+
self.package_path, device="cuda"
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
# Run inference
|
| 31 |
+
# We add a try/except block because if ZeroGPU swaps the underlying hardware
|
| 32 |
+
# between requests, the old runner might be invalid.
|
| 33 |
+
try:
|
| 34 |
+
return self.runner(*args, **kwargs)
|
| 35 |
+
except RuntimeError:
|
| 36 |
+
# Context might be stale, reload
|
| 37 |
+
self.runner = torch._inductor.aoti_load_package(
|
| 38 |
+
self.package_path, device="cuda"
|
| 39 |
+
)
|
| 40 |
+
return self.runner(*args, **kwargs)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# --- 2. Initialize Global Components ---
|
| 44 |
TOKENIZER = GermanCharsTokenizer()
|
| 45 |
|
| 46 |
+
# Instead of a dict of raw paths, we instantiate our Lazy Loaders immediately.
|
| 47 |
+
# These act like standard PyTorch modules but use almost no RAM until inference.
|
| 48 |
+
MODELS = {
|
| 49 |
"Caro": {
|
| 50 |
+
"encoder": LazyAotPackage("aot_package/caro_fastpitch_encoder.pt2"),
|
| 51 |
+
"decoder": LazyAotPackage("aot_package/caro_fastpitch_decoder.pt2"),
|
| 52 |
+
"vocoder": LazyAotPackage("aot_package/caro_hifigan.pt2"),
|
| 53 |
},
|
| 54 |
"Karlsson": {
|
| 55 |
+
"encoder": LazyAotPackage("aot_package/karlsson_fastpitch_encoder.pt2"),
|
| 56 |
+
"decoder": LazyAotPackage("aot_package/karlsson_fastpitch_decoder.pt2"),
|
| 57 |
+
"vocoder": LazyAotPackage("aot_package/karlsson_hifigan.pt2"),
|
| 58 |
},
|
| 59 |
}
|
| 60 |
|
| 61 |
+
# --- 3. Inference Function ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
@spaces.GPU(duration=60)
|
| 63 |
def synthesize_speech(text: str, voice: str, pace: float = 1.0):
|
| 64 |
"""
|
| 65 |
+
Synthesize speech. The @spaces.GPU decorator ensures a GPU is assigned
|
| 66 |
+
for the duration of this function.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
if not text.strip():
|
| 69 |
return None
|
| 70 |
|
|
|
|
| 73 |
tokens_tensor = torch.tensor([tokens], dtype=torch.int64).to("cuda")
|
| 74 |
|
| 75 |
# Prepare control parameters
|
| 76 |
+
pitch_tensor = torch.zeros_like(tokens_tensor, dtype=torch.float32).to("cuda")
|
| 77 |
+
pace_tensor = torch.ones_like(tokens_tensor, dtype=torch.float32).to("cuda") * pace
|
| 78 |
+
|
| 79 |
+
# Retrieve the correct lazy-loaded models
|
| 80 |
+
# The .forward() call inside these objects will trigger the load to GPU
|
| 81 |
+
encoder = MODELS[voice]["encoder"]
|
| 82 |
+
decoder = MODELS[voice]["decoder"]
|
| 83 |
+
vocoder = MODELS[voice]["vocoder"]
|
| 84 |
|
| 85 |
with torch.inference_mode():
|
| 86 |
+
# 1. Run Encoder (Loads .pt2 to GPU if needed -> Runs)
|
|
|
|
| 87 |
len_regulated, dec_lens, spk_emb = encoder(
|
| 88 |
tokens_tensor, pitch_tensor, pace_tensor
|
| 89 |
)
|
| 90 |
|
| 91 |
+
# 2. Run Decoder (Loads .pt2 to GPU if needed -> Runs)
|
|
|
|
| 92 |
spec = decoder(len_regulated, dec_lens, spk_emb)
|
| 93 |
|
| 94 |
+
# 3. Run Vocoder (Loads .pt2 to GPU if needed -> Runs)
|
|
|
|
| 95 |
audio = vocoder(spec)
|
| 96 |
|
| 97 |
# Convert to numpy and return
|
|
|
|
| 101 |
return (sample_rate, audio_array)
|
| 102 |
|
| 103 |
|
| 104 |
+
# --- 4. Gradio Interface ---
|
| 105 |
with gr.Blocks(title="German TTS - Caro & Karlsson") as demo:
|
| 106 |
gr.Markdown(
|
| 107 |
"""
|
| 108 |
# 🎙️ German Text-to-Speech
|
|
|
|
| 109 |
Generate German speech using two different voices: **Caro** and **Karlsson**.
|
|
|
|
|
|
|
| 110 |
"""
|
| 111 |
)
|
| 112 |
|
|
|
|
| 114 |
with gr.Column():
|
| 115 |
text_input = gr.Textbox(
|
| 116 |
label="Text to synthesize",
|
|
|
|
|
|
|
| 117 |
value="Hallo! Willkommen zur deutschen Sprachsynthese.",
|
| 118 |
+
lines=3,
|
| 119 |
)
|
|
|
|
| 120 |
voice_dropdown = gr.Dropdown(
|
| 121 |
choices=["Caro", "Karlsson"], label="Voice", value="Karlsson"
|
| 122 |
)
|
|
|
|
| 123 |
pace_slider = gr.Slider(
|
| 124 |
+
minimum=0.5, maximum=2.0, value=1.0, step=0.1, label="Speaking Rate"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
)
|
|
|
|
| 126 |
generate_btn = gr.Button("Generate Speech 🔊", variant="primary")
|
| 127 |
|
| 128 |
with gr.Column():
|
| 129 |
audio_output = gr.Audio(label="Generated Audio", type="numpy")
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
generate_btn.click(
|
| 132 |
fn=synthesize_speech,
|
| 133 |
inputs=[text_input, voice_dropdown, pace_slider],
|
|
|
|
| 135 |
)
|
| 136 |
|
| 137 |
if __name__ == "__main__":
|
| 138 |
+
demo.launch()
|