Spaces:
Running
on
Zero
Running
on
Zero
remove onnx fallback, load with gpu decorator
Browse files
app.py
CHANGED
|
@@ -1,29 +1,12 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import onnxruntime as ort
|
| 3 |
-
import numpy as np
|
| 4 |
import torch
|
| 5 |
import torch._inductor
|
|
|
|
| 6 |
from char_tokenizers import GermanCharsTokenizer
|
| 7 |
|
| 8 |
-
# Try to import spaces for Zero GPU support
|
| 9 |
-
try:
|
| 10 |
-
import spaces
|
| 11 |
-
|
| 12 |
-
HAS_SPACES = True
|
| 13 |
-
except ImportError:
|
| 14 |
-
HAS_SPACES = False
|
| 15 |
-
print("spaces not available, running without Zero GPU support")
|
| 16 |
-
|
| 17 |
# Initialize tokenizer
|
| 18 |
TOKENIZER = GermanCharsTokenizer()
|
| 19 |
|
| 20 |
-
# Check if CUDA is available
|
| 21 |
-
USE_GPU = torch.cuda.is_available()
|
| 22 |
-
DEVICE = "cuda" if USE_GPU else "cpu"
|
| 23 |
-
|
| 24 |
-
print(f"Using device: {DEVICE}")
|
| 25 |
-
print(f"Zero GPU support: {HAS_SPACES}")
|
| 26 |
-
|
| 27 |
# Model paths
|
| 28 |
AOT_MODELS = {
|
| 29 |
"Caro": {
|
|
@@ -38,21 +21,19 @@ AOT_MODELS = {
|
|
| 38 |
},
|
| 39 |
}
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
"fastpitch": "onnx/caro_fastpitch.onnx",
|
| 44 |
-
"hifigan": "onnx/caro_hifigan.onnx",
|
| 45 |
-
},
|
| 46 |
-
"Karlsson": {
|
| 47 |
-
"fastpitch": "onnx/karlsson_fastpitch.onnx",
|
| 48 |
-
"hifigan": "onnx/karlsson_hifigan.onnx",
|
| 49 |
-
},
|
| 50 |
-
}
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
print("Loading AOT models for GPU...")
|
| 55 |
-
aot_sessions = {}
|
| 56 |
for voice_name, paths in AOT_MODELS.items():
|
| 57 |
print(f"Loading {voice_name} AOT models...")
|
| 58 |
aot_sessions[voice_name] = {
|
|
@@ -61,44 +42,34 @@ if USE_GPU:
|
|
| 61 |
"vocoder": torch._inductor.aoti_load_package(paths["vocoder"]),
|
| 62 |
}
|
| 63 |
print("AOT models loaded successfully!")
|
| 64 |
-
onnx_sessions = None
|
| 65 |
-
else:
|
| 66 |
-
print("Loading ONNX models for CPU...")
|
| 67 |
-
onnx_sessions = {}
|
| 68 |
-
for voice_name, paths in ONNX_MODELS.items():
|
| 69 |
-
print(f"Loading {voice_name} ONNX models...")
|
| 70 |
-
onnx_sessions[voice_name] = {
|
| 71 |
-
"fastpitch": ort.InferenceSession(paths["fastpitch"]),
|
| 72 |
-
"hifigan": ort.InferenceSession(paths["hifigan"]),
|
| 73 |
-
}
|
| 74 |
-
print("ONNX models loaded successfully!")
|
| 75 |
-
aot_sessions = None
|
| 76 |
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
):
|
| 81 |
"""
|
| 82 |
-
Synthesize speech using AOT compiled models
|
| 83 |
|
| 84 |
Args:
|
| 85 |
text: Input text to synthesize
|
| 86 |
voice: Voice to use (Caro or Karlsson)
|
| 87 |
pace: Speaking rate (1.0 is normal, <1.0 is slower, >1.0 is faster)
|
| 88 |
-
pitch_shift: Pitch adjustment (0.0 = no change)
|
| 89 |
|
| 90 |
Returns:
|
| 91 |
Tuple of (sample_rate, audio_array)
|
| 92 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
if not text.strip():
|
| 94 |
return None
|
| 95 |
|
| 96 |
# Tokenize text
|
| 97 |
tokens = TOKENIZER.encode(text)
|
| 98 |
-
tokens_tensor = torch.tensor([tokens], dtype=torch.int64).to(
|
| 99 |
|
| 100 |
# Prepare control parameters
|
| 101 |
-
pitch_tensor = torch.zeros_like(tokens_tensor, dtype=torch.float32)
|
| 102 |
pace_tensor = torch.ones_like(tokens_tensor, dtype=torch.float32) * pace
|
| 103 |
|
| 104 |
with torch.inference_mode():
|
|
@@ -123,84 +94,14 @@ def synthesize_speech_aot(
|
|
| 123 |
return (sample_rate, audio_array)
|
| 124 |
|
| 125 |
|
| 126 |
-
def synthesize_speech_onnx(text: str, voice: str, pace: float = 1.0):
|
| 127 |
-
"""
|
| 128 |
-
Synthesize speech using ONNX models (CPU).
|
| 129 |
-
|
| 130 |
-
Args:
|
| 131 |
-
text: Input text to synthesize
|
| 132 |
-
voice: Voice to use (Caro or Karlsson)
|
| 133 |
-
pace: Speaking rate (1.0 is normal, <1.0 is slower, >1.0 is faster)
|
| 134 |
-
|
| 135 |
-
Returns:
|
| 136 |
-
Tuple of (sample_rate, audio_array)
|
| 137 |
-
"""
|
| 138 |
-
if not text.strip():
|
| 139 |
-
return None
|
| 140 |
-
|
| 141 |
-
# Tokenize text
|
| 142 |
-
tokens = TOKENIZER.encode(text)
|
| 143 |
-
|
| 144 |
-
# Prepare inputs for FastPitch
|
| 145 |
-
paces = np.zeros(len(tokens), dtype=np.float32) + pace
|
| 146 |
-
pitches = np.zeros(len(tokens), dtype=np.float32) # Keep pitch at 0.0
|
| 147 |
-
|
| 148 |
-
inputs = {
|
| 149 |
-
"text": np.array([tokens], dtype=np.int64),
|
| 150 |
-
"pace": np.array([paces], dtype=np.float32),
|
| 151 |
-
"pitch": np.array([pitches], dtype=np.float32),
|
| 152 |
-
}
|
| 153 |
-
|
| 154 |
-
# Generate spectrogram with FastPitch
|
| 155 |
-
fastpitch_session = onnx_sessions[voice]["fastpitch"]
|
| 156 |
-
spec = fastpitch_session.run(None, inputs)[0]
|
| 157 |
-
|
| 158 |
-
# Generate audio with HiFiGAN
|
| 159 |
-
hifigan_session = onnx_sessions[voice]["hifigan"]
|
| 160 |
-
gan_inputs = {"spec": spec}
|
| 161 |
-
audio = hifigan_session.run(None, gan_inputs)[0]
|
| 162 |
-
|
| 163 |
-
# Return sample rate and audio
|
| 164 |
-
sample_rate = 44100
|
| 165 |
-
audio_array = audio.squeeze()
|
| 166 |
-
|
| 167 |
-
return (sample_rate, audio_array)
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
def synthesize_speech(text: str, voice: str, pace: float = 1.0):
|
| 171 |
-
"""
|
| 172 |
-
Synthesize speech from text using the selected voice.
|
| 173 |
-
Uses AOT models on GPU or ONNX models on CPU.
|
| 174 |
-
|
| 175 |
-
Args:
|
| 176 |
-
text: Input text to synthesize
|
| 177 |
-
voice: Voice to use (Caro or Karlsson)
|
| 178 |
-
pace: Speaking rate (1.0 is normal, <1.0 is slower, >1.0 is faster)
|
| 179 |
-
|
| 180 |
-
Returns:
|
| 181 |
-
Tuple of (sample_rate, audio_array)
|
| 182 |
-
"""
|
| 183 |
-
if USE_GPU:
|
| 184 |
-
return synthesize_speech_aot(text, voice, pace)
|
| 185 |
-
else:
|
| 186 |
-
return synthesize_speech_onnx(text, voice, pace)
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
# Apply Zero GPU decorator if available
|
| 190 |
-
if HAS_SPACES and USE_GPU:
|
| 191 |
-
synthesize_speech = spaces.GPU(synthesize_speech)
|
| 192 |
-
|
| 193 |
-
|
| 194 |
# Create Gradio interface
|
| 195 |
with gr.Blocks(title="German TTS - Caro & Karlsson") as demo:
|
| 196 |
gr.Markdown(
|
| 197 |
-
|
| 198 |
# 🎙️ German Text-to-Speech
|
| 199 |
|
| 200 |
Generate German speech using two different voices: **Caro** and **Karlsson**.
|
| 201 |
|
| 202 |
-
**Running on:** {DEVICE.upper()} {"(AOT models)" if USE_GPU else "(ONNX models)"}
|
| 203 |
-
|
| 204 |
Enter your German text below and select a voice to synthesize speech.
|
| 205 |
"""
|
| 206 |
)
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
import torch._inductor
|
| 4 |
+
import spaces
|
| 5 |
from char_tokenizers import GermanCharsTokenizer
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
# Initialize tokenizer
|
| 8 |
TOKENIZER = GermanCharsTokenizer()
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
# Model paths
|
| 11 |
AOT_MODELS = {
|
| 12 |
"Caro": {
|
|
|
|
| 21 |
},
|
| 22 |
}
|
| 23 |
|
| 24 |
+
# Global variable to hold loaded models
|
| 25 |
+
aot_sessions = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
|
| 28 |
+
@spaces.GPU(duration=60)
|
| 29 |
+
def load_models():
|
| 30 |
+
"""Load AOT models on GPU."""
|
| 31 |
+
global aot_sessions
|
| 32 |
+
|
| 33 |
+
if aot_sessions: # Already loaded
|
| 34 |
+
return
|
| 35 |
+
|
| 36 |
print("Loading AOT models for GPU...")
|
|
|
|
| 37 |
for voice_name, paths in AOT_MODELS.items():
|
| 38 |
print(f"Loading {voice_name} AOT models...")
|
| 39 |
aot_sessions[voice_name] = {
|
|
|
|
| 42 |
"vocoder": torch._inductor.aoti_load_package(paths["vocoder"]),
|
| 43 |
}
|
| 44 |
print("AOT models loaded successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
|
| 47 |
+
@spaces.GPU(duration=60)
|
| 48 |
+
def synthesize_speech(text: str, voice: str, pace: float = 1.0):
|
|
|
|
| 49 |
"""
|
| 50 |
+
Synthesize speech from text using AOT compiled models on GPU.
|
| 51 |
|
| 52 |
Args:
|
| 53 |
text: Input text to synthesize
|
| 54 |
voice: Voice to use (Caro or Karlsson)
|
| 55 |
pace: Speaking rate (1.0 is normal, <1.0 is slower, >1.0 is faster)
|
|
|
|
| 56 |
|
| 57 |
Returns:
|
| 58 |
Tuple of (sample_rate, audio_array)
|
| 59 |
"""
|
| 60 |
+
# Load models if not already loaded
|
| 61 |
+
if not aot_sessions:
|
| 62 |
+
load_models()
|
| 63 |
+
|
| 64 |
if not text.strip():
|
| 65 |
return None
|
| 66 |
|
| 67 |
# Tokenize text
|
| 68 |
tokens = TOKENIZER.encode(text)
|
| 69 |
+
tokens_tensor = torch.tensor([tokens], dtype=torch.int64).to("cuda")
|
| 70 |
|
| 71 |
# Prepare control parameters
|
| 72 |
+
pitch_tensor = torch.zeros_like(tokens_tensor, dtype=torch.float32)
|
| 73 |
pace_tensor = torch.ones_like(tokens_tensor, dtype=torch.float32) * pace
|
| 74 |
|
| 75 |
with torch.inference_mode():
|
|
|
|
| 94 |
return (sample_rate, audio_array)
|
| 95 |
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
# Create Gradio interface
|
| 98 |
with gr.Blocks(title="German TTS - Caro & Karlsson") as demo:
|
| 99 |
gr.Markdown(
|
| 100 |
+
"""
|
| 101 |
# 🎙️ German Text-to-Speech
|
| 102 |
|
| 103 |
Generate German speech using two different voices: **Caro** and **Karlsson**.
|
| 104 |
|
|
|
|
|
|
|
| 105 |
Enter your German text below and select a voice to synthesize speech.
|
| 106 |
"""
|
| 107 |
)
|