File size: 86,285 Bytes
0ae46fb
 
fce8688
0ae46fb
 
 
 
7415155
0ae46fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec4d4b3
 
 
 
 
 
 
 
 
0ae46fb
d74506f
a863763
 
 
 
 
 
 
 
 
 
 
 
 
 
e45d3a4
 
 
b2ab862
 
 
 
 
 
f89165d
 
 
0ae46fb
 
 
 
 
 
d74506f
 
 
 
 
 
8d74e9c
f0a6b02
f89165d
0ae46fb
 
 
 
fce8688
 
 
 
 
0ae46fb
d74506f
0ae46fb
 
d74506f
 
 
 
0ae46fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e45d3a4
 
 
 
 
 
d74506f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ae46fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec4d4b3
 
0ae46fb
f89165d
0ae46fb
a863763
6e8bf5a
 
 
a863763
0e45c9f
40374f9
53093c0
413918e
0e45c9f
40374f9
413918e
0e45c9f
40374f9
0e45c9f
40374f9
0e45c9f
a863763
6e8bf5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53093c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e8bf5a
 
 
53093c0
 
6e8bf5a
 
 
 
 
 
 
 
7cf238e
6e8bf5a
 
8d36e66
 
 
 
7cf238e
 
 
8d36e66
7cf238e
8d36e66
7cf238e
 
 
 
f6a97e3
 
8d36e66
c816ffa
0e45c9f
7cf238e
f6a97e3
8bafa0f
eaec621
f6a97e3
0e45c9f
 
 
8bafa0f
7cf238e
8bafa0f
0e45c9f
 
f6a97e3
7cf238e
f6a97e3
 
 
 
 
 
7cf238e
f6a97e3
7cf238e
 
 
 
 
f6a97e3
 
 
 
 
 
 
7cf238e
 
f6a97e3
8bafa0f
0e45c9f
f6a97e3
8bafa0f
eaec621
 
 
 
 
 
 
 
8bafa0f
 
 
f6a97e3
 
eaec621
 
 
 
 
 
 
 
8bafa0f
c816ffa
6e8bf5a
 
 
 
 
 
 
 
 
 
 
 
 
0e45c9f
fce8688
 
c816ffa
fce8688
 
 
 
 
c816ffa
 
 
 
8bafa0f
 
c816ffa
 
 
 
8bafa0f
 
 
 
c816ffa
 
8bafa0f
 
 
c816ffa
8bafa0f
c816ffa
 
 
 
fce8688
 
 
 
 
c816ffa
fce8688
 
 
 
 
c816ffa
fce8688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cf238e
 
fce8688
 
 
 
 
 
eaec621
7cf238e
eaec621
7cf238e
fce8688
 
 
 
 
 
0ae46fb
ec4d4b3
d74506f
f89165d
 
 
 
b2ab862
 
 
f89165d
1c59c7e
 
 
 
 
 
b2ab862
1c59c7e
f89165d
 
fce8688
 
5040e2f
 
 
 
fce8688
 
5040e2f
fce8688
 
 
 
5040e2f
fce8688
 
 
 
0e45c9f
fce8688
 
 
 
 
 
 
 
5040e2f
fce8688
 
 
5040e2f
 
f89165d
fce8688
f89165d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fce8688
5040e2f
 
 
 
 
 
fce8688
5040e2f
fce8688
5040e2f
fce8688
 
5040e2f
fce8688
5040e2f
fce8688
5040e2f
 
fce8688
5040e2f
fce8688
 
f89165d
 
 
 
5040e2f
 
 
 
 
 
6e8bf5a
 
 
5040e2f
 
 
6e8bf5a
5040e2f
 
 
 
 
 
 
 
6e8bf5a
5040e2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f89165d
5040e2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2ab862
 
 
5040e2f
f89165d
 
 
 
1c59c7e
 
 
 
f89165d
 
 
 
 
 
 
 
 
 
 
 
812cc3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d74506f
 
 
 
 
 
 
 
1992c15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fce8688
 
d74506f
fce8688
d74506f
fce8688
d74506f
fce8688
 
d74506f
0e45c9f
fce8688
 
 
 
d74506f
 
fce8688
 
 
 
 
 
 
d74506f
fce8688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d74506f
fce8688
 
d74506f
0e45c9f
 
a863763
c816ffa
a863763
 
0e45c9f
 
 
a863763
0e45c9f
 
 
 
 
 
 
 
 
 
 
 
 
a863763
0e45c9f
c816ffa
 
0e45c9f
 
 
 
 
 
 
 
 
 
 
7cf238e
0e45c9f
 
 
 
 
eaec621
0e45c9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cf238e
c816ffa
0e45c9f
 
c816ffa
 
a863763
0e45c9f
c816ffa
 
 
0e45c9f
 
 
c816ffa
8bafa0f
c816ffa
0e45c9f
 
8bafa0f
 
7cf238e
c816ffa
a863763
 
 
7cf238e
e45d3a4
 
a863763
 
 
e45d3a4
 
 
a863763
d74506f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cf238e
d74506f
 
7cf238e
d74506f
 
a863763
1992c15
 
a863763
 
 
 
 
 
 
 
 
 
 
 
 
1992c15
 
 
a863763
 
 
 
 
1992c15
 
 
a863763
1992c15
 
 
a863763
 
1992c15
 
7cf238e
1992c15
a863763
fce8688
 
7cf238e
d74506f
 
fce8688
d74506f
 
 
 
 
 
 
 
fce8688
 
d74506f
0e45c9f
fce8688
 
 
 
d74506f
 
7cf238e
 
 
 
 
fce8688
 
 
 
 
 
 
 
 
 
d74506f
fce8688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d74506f
fce8688
 
 
 
d74506f
ec4d4b3
0ae46fb
fce8688
 
7cf238e
7415155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fce8688
 
7415155
0e45c9f
fce8688
 
 
 
7415155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fce8688
 
 
 
8bafa0f
fce8688
 
8bafa0f
fce8688
 
 
 
 
 
 
 
 
 
 
7cf238e
fce8688
 
 
 
8bafa0f
 
7cf238e
8bafa0f
 
7cf238e
8bafa0f
fce8688
8bafa0f
eaec621
 
fce8688
8bafa0f
 
7cf238e
8bafa0f
 
7cf238e
8bafa0f
fce8688
8bafa0f
 
 
fce8688
8bafa0f
 
fce8688
 
 
 
 
 
 
 
 
7415155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20851fb
7415155
 
20851fb
7415155
 
20851fb
7415155
 
 
 
 
20851fb
7415155
 
 
 
 
20851fb
 
 
 
 
7415155
 
 
 
 
fce8688
 
7415155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fce8688
 
7415155
0e45c9f
fce8688
 
 
 
7415155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fce8688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e45c9f
fce8688
 
 
 
 
 
 
 
 
 
 
 
 
 
0ae46fb
fce8688
0ae46fb
 
 
fce8688
0ae46fb
 
 
fce8688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ae46fb
 
 
 
 
 
 
 
 
 
ec4d4b3
 
 
0ae46fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d74506f
 
 
0ae46fb
 
 
 
 
d74506f
7415155
 
 
 
 
 
 
 
 
 
 
 
 
 
20851fb
7415155
20851fb
 
7415155
 
 
 
 
 
 
 
d74506f
 
 
 
 
 
 
 
 
 
 
 
7415155
 
 
d74506f
 
 
7415155
 
 
 
 
d74506f
0ae46fb
7415155
ec4d4b3
 
d74506f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7415155
d74506f
 
1992c15
7415155
7cf238e
d74506f
 
8bafa0f
d74506f
8bafa0f
7cf238e
eaec621
8bafa0f
7cf238e
8bafa0f
 
d74506f
1992c15
 
8bafa0f
 
 
d74506f
 
 
 
 
 
 
 
 
 
 
7415155
d74506f
 
 
 
 
0ae46fb
 
 
 
d74506f
 
 
 
 
 
 
 
 
 
812cc3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d74506f
 
 
 
0ae46fb
d74506f
0ae46fb
 
 
 
 
 
 
d74506f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ae46fb
d74506f
0ae46fb
 
 
d74506f
 
 
 
 
 
ec4d4b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ae46fb
 
d74506f
0ae46fb
d74506f
0ae46fb
 
 
d74506f
0ae46fb
 
 
 
 
 
d74506f
7415155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d74506f
 
 
 
f89165d
 
1992c15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f89165d
1992c15
f89165d
 
 
d74506f
0ae46fb
 
 
 
 
f89165d
 
 
 
 
 
 
0ae46fb
 
 
 
 
 
 
 
 
 
fce8688
0ae46fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d74e9c
0ae46fb
 
 
 
e45d3a4
 
 
 
 
 
 
bc332d0
 
 
 
 
 
 
0ae46fb
 
 
e45d3a4
 
 
 
 
 
 
 
 
 
 
f89165d
e45d3a4
 
 
 
 
 
 
 
 
 
 
f89165d
e45d3a4
f89165d
e45d3a4
 
 
 
 
 
 
f89165d
 
e45d3a4
f89165d
e45d3a4
f89165d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d74506f
 
 
20851fb
d74506f
20851fb
d74506f
 
 
 
 
 
 
 
 
 
 
8d74e9c
d74506f
 
0ae46fb
d74506f
0ae46fb
 
 
 
 
 
 
 
 
812cc3b
0ae46fb
 
 
d74506f
 
 
 
0ae46fb
d74506f
0ae46fb
 
 
 
 
812cc3b
0ae46fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d74506f
 
 
 
0ae46fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d74506f
 
 
 
0ae46fb
 
 
 
 
 
 
f89165d
 
8d74e9c
d74506f
f89165d
1c59c7e
 
 
 
 
5040e2f
1c59c7e
 
5040e2f
fce8688
 
 
 
 
 
 
1c59c7e
0ae46fb
d74506f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
import gradio as gr
import os
import base64
import logging
import torch
import threading
import time
import json
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
    StoppingCriteria,
    StoppingCriteriaList,
)
from transformers import logging as hf_logging
import spaces
from llama_index.core import (
    StorageContext,
    VectorStoreIndex,
    load_index_from_storage,
    Document as LlamaDocument,
)
from llama_index.core import Settings
from llama_index.core.node_parser import (
    HierarchicalNodeParser,
    get_leaf_nodes,
    get_root_nodes,
)
from llama_index.core.retrievers import AutoMergingRetriever
from llama_index.core.storage.docstore import SimpleDocumentStore
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
# Import GPU-tagged model functions
from model import (
    get_llm_for_rag as get_llm_for_rag_gpu,
    get_embedding_model as get_embedding_model_gpu,
    generate_with_medswin,
    initialize_medical_model,
    global_medical_models,
    global_medical_tokenizers
)
from tqdm import tqdm
from langdetect import detect, LangDetectException
# MCP imports
try:
    from mcp import ClientSession, StdioServerParameters
    from mcp.client.stdio import stdio_client
    import asyncio
    try:
        import nest_asyncio
        nest_asyncio.apply()  # Allow nested event loops
    except ImportError:
        pass  # nest_asyncio is optional
    MCP_AVAILABLE = True
except ImportError:
    MCP_AVAILABLE = False
    # Fallback imports if MCP is not available
from ddgs import DDGS
import requests
from bs4 import BeautifulSoup
try:
    from TTS.api import TTS
    TTS_AVAILABLE = True
except ImportError:
    TTS_AVAILABLE = False
    TTS = None
import numpy as np
import soundfile as sf
import tempfile

os.environ["TOKENIZERS_PARALLELISM"] = "false"
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
hf_logging.set_verbosity_error()

# Model configurations
MEDSWIN_MODELS = {
    "MedSwin SFT": "MedSwin/MedSwin-7B-SFT",
    "MedSwin KD": "MedSwin/MedSwin-7B-KD",
    "MedSwin TA": "MedSwin/MedSwin-Merged-TA-SFT-0.7"
}
DEFAULT_MEDICAL_MODEL = "MedSwin TA"
EMBEDDING_MODEL = "abhinand/MedEmbed-large-v0.1"  # Domain-tuned medical embedding model
TTS_MODEL = "maya-research/maya1"
HF_TOKEN = os.environ.get("HF_TOKEN")
if not HF_TOKEN:
    raise ValueError("HF_TOKEN not found in environment variables")

# Gemini MCP configuration
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
GEMINI_MODEL = os.environ.get("GEMINI_MODEL", "gemini-2.5-flash")  # Default for harder tasks
GEMINI_MODEL_LITE = os.environ.get("GEMINI_MODEL_LITE", "gemini-2.5-flash-lite")  # For parsing and simple tasks

# Custom UI
TITLE = "<h1><center>🩺 MedLLM Agent - Medical RAG & Web Search System</center></h1>"
DESCRIPTION = """
<center>
<p><strong>Advanced Medical AI Assistant</strong> powered by MedSwin models</p>
<p>πŸ“„ <strong>Document RAG:</strong> Answer based on uploaded medical documents</p>
<p>🌐 <strong>Web Search:</strong> Fetch knowledge from reliable online medical resources</p>
<p>🌍 <strong>Multi-language:</strong> Automatic translation for non-English queries</p>
<p>Upload PDF or text files to get started!</p>
</center>
"""
CSS = """
.upload-section {
    max-width: 400px;
    margin: 0 auto;
    padding: 10px;
    border: 2px dashed #ccc;
    border-radius: 10px;
}
.upload-button {
    background: #34c759 !important;
    color: white !important;
    border-radius: 25px !important;
}
.chatbot-container {
    margin-top: 20px;
}
.status-output {
    margin-top: 10px;
    font-size: 14px;
}
.processing-info {
    margin-top: 5px;
    font-size: 12px;
    color: #666;
}
.info-container {
    margin-top: 10px;
    padding: 10px;
    border-radius: 5px;
}
.file-list {
    margin-top: 0;
    max-height: 200px;
    overflow-y: auto;
    padding: 5px;
    border: 1px solid #eee;
    border-radius: 5px;
}
.stats-box {
    margin-top: 10px;
    padding: 10px;
    border-radius: 5px;
    font-size: 12px;
}
.submit-btn {
    background: #1a73e8 !important;
    color: white !important;
    border-radius: 25px !important;
    margin-left: 10px;
    padding: 5px 10px;
    font-size: 16px;
}
.input-row {
    display: flex;
    align-items: center;
}
.recording-timer {
    font-size: 12px;
    color: #666;
    text-align: center;
    margin-top: 5px;
}
.feature-badge {
    display: inline-block;
    padding: 3px 8px;
    margin: 2px;
    border-radius: 12px;
    font-size: 11px;
    font-weight: bold;
}
.badge-rag {
    background: #e3f2fd;
    color: #1976d2;
}
.badge-web {
    background: #f3e5f5;
    color: #7b1fa2;
}
@media (min-width: 768px) {
    .main-container {
        display: flex;
        justify-content: space-between;
        gap: 20px;
    }
    .upload-section {
        flex: 1;
        max-width: 300px;
    }
    .chatbot-container {
        flex: 2;
        margin-top: 0;
    }
}
"""

# Global model storage - models are stored in model.py
# Import the global model storage from model.py
global_file_info = {}
global_tts_model = None

# MCP client storage
global_mcp_session = None
global_mcp_stdio_ctx = None  # Store stdio context to keep it alive
global_mcp_lock = threading.Lock()  # Lock for thread-safe session access
# MCP server configuration via environment variables
# Gemini MCP server: Python-based server (agent.py)
# This works on Hugging Face Spaces without requiring npm/Node.js
# Make sure GEMINI_API_KEY is set in environment variables
# 
# Default configuration uses the bundled agent.py script
# To override:
#   export MCP_SERVER_COMMAND="python"
#   export MCP_SERVER_ARGS="/path/to/agent.py"
script_dir = os.path.dirname(os.path.abspath(__file__))
agent_path = os.path.join(script_dir, "agent.py")
MCP_SERVER_COMMAND = os.environ.get("MCP_SERVER_COMMAND", "python")
MCP_SERVER_ARGS = os.environ.get("MCP_SERVER_ARGS", agent_path).split() if os.environ.get("MCP_SERVER_ARGS") else [agent_path]

async def get_mcp_session():
    """Get or create MCP client session with proper context management"""
    global global_mcp_session, global_mcp_stdio_ctx
    
    if not MCP_AVAILABLE:
        return None
    
    # Check if session exists and is still valid
    if global_mcp_session is not None:
        try:
            # Test if session is still alive by listing tools
            await global_mcp_session.list_tools()
            return global_mcp_session
        except Exception as e:
            logger.debug(f"Existing MCP session invalid, recreating: {e}")
            # Clean up old session
            try:
                if global_mcp_session is not None:
                    await global_mcp_session.__aexit__(None, None, None)
            except:
                pass
            try:
                if global_mcp_stdio_ctx is not None:
                    await global_mcp_stdio_ctx.__aexit__(None, None, None)
            except:
                pass
            global_mcp_session = None
            global_mcp_stdio_ctx = None
    
    # Create new session using correct MCP SDK pattern
    try:
        # Prepare environment variables for MCP server
        mcp_env = os.environ.copy()
        if GEMINI_API_KEY:
            mcp_env["GEMINI_API_KEY"] = GEMINI_API_KEY
        else:
            logger.warning("GEMINI_API_KEY not set in environment. Gemini MCP features may not work.")
        
        # Add other Gemini MCP configuration if set
        if os.environ.get("GEMINI_MODEL"):
            mcp_env["GEMINI_MODEL"] = os.environ.get("GEMINI_MODEL")
        if os.environ.get("GEMINI_TIMEOUT"):
            mcp_env["GEMINI_TIMEOUT"] = os.environ.get("GEMINI_TIMEOUT")
        if os.environ.get("GEMINI_MAX_OUTPUT_TOKENS"):
            mcp_env["GEMINI_MAX_OUTPUT_TOKENS"] = os.environ.get("GEMINI_MAX_OUTPUT_TOKENS")
        if os.environ.get("GEMINI_TEMPERATURE"):
            mcp_env["GEMINI_TEMPERATURE"] = os.environ.get("GEMINI_TEMPERATURE")
        
        logger.info(f"Creating MCP client session with command: {MCP_SERVER_COMMAND} {MCP_SERVER_ARGS}")
        server_params = StdioServerParameters(
            command=MCP_SERVER_COMMAND,
            args=MCP_SERVER_ARGS,
            env=mcp_env
        )
        
        # Correct MCP SDK usage: stdio_client is an async context manager
        # that yields (read, write) streams
        stdio_ctx = stdio_client(server_params)
        read, write = await stdio_ctx.__aenter__()
        
        # Create ClientSession from the streams
        # The __aenter__() method automatically handles the initialization handshake
        session = ClientSession(read, write)
        
        # Wait longer for the server process to fully start
        # The server needs time to: start Python, import modules, initialize Gemini client, start MCP server
        logger.info("⏳ Waiting for MCP server process to start...")
        await asyncio.sleep(3.0)  # Increased wait for server process startup
        
        try:
            # Initialize the session (this sends initialize request and waits for response)
            logger.info("πŸ”„ Initializing MCP session...")
            await session.__aenter__()
            logger.info("βœ… MCP session initialized, verifying tools...")
        except Exception as e:
            logger.warning(f"MCP session initialization had an issue (may be expected): {e}")
            # Continue anyway - the session might still work
        
        # Wait longer for the server to be fully ready after initialization
        # The server needs time to process the initialization and be ready for requests
        await asyncio.sleep(2.0)  # Wait after initialization
        
        # Verify the session works by listing tools with retries
        # This confirms the server is ready to handle requests
        max_init_retries = 15
        tools_listed = False
        tools = None
        last_error = None
        for init_attempt in range(max_init_retries):
            try:
                tools = await session.list_tools()
                if tools and hasattr(tools, 'tools') and len(tools.tools) > 0:
                    logger.info(f"βœ… MCP server ready with {len(tools.tools)} tools: {[t.name for t in tools.tools]}")
                    tools_listed = True
                    break
            except Exception as e:
                last_error = e
                error_str = str(e).lower()
                error_msg = str(e)
                
                # Log the actual error for debugging
                if init_attempt == 0:
                    logger.debug(f"First list_tools attempt failed: {error_msg}")
                
                # Ignore initialization-related errors during the handshake phase
                if "initialization" in error_str or "before initialization" in error_str or "not initialized" in error_str:
                    if init_attempt < max_init_retries - 1:
                        wait_time = 0.5 * (init_attempt + 1)  # Progressive wait: 0.5s, 1s, 1.5s...
                        logger.debug(f"Server still initializing (attempt {init_attempt + 1}/{max_init_retries}), waiting {wait_time}s...")
                        await asyncio.sleep(wait_time)
                        continue
                elif "invalid request" in error_str or "invalid request parameters" in error_str:
                    # This might be a timing issue - wait and retry
                    if init_attempt < max_init_retries - 1:
                        wait_time = 0.8 * (init_attempt + 1)  # Longer wait for invalid request errors
                        logger.debug(f"Invalid request error (attempt {init_attempt + 1}/{max_init_retries}), waiting {wait_time}s...")
                        await asyncio.sleep(wait_time)
                        continue
                elif init_attempt < max_init_retries - 1:
                    wait_time = 0.5 * (init_attempt + 1)
                    logger.debug(f"Tool listing attempt {init_attempt + 1}/{max_init_retries} failed: {error_msg}, waiting {wait_time}s...")
                    await asyncio.sleep(wait_time)
                else:
                    logger.error(f"❌ Could not list tools after {max_init_retries} attempts. Last error: {error_msg}")
                    # Don't continue - if we can't list tools, the session is not usable
                    try:
                        await session.__aexit__(None, None, None)
                    except:
                        pass
                    try:
                        await stdio_ctx.__aexit__(None, None, None)
                    except:
                        pass
                    return None
        
        if not tools_listed:
            error_msg = str(last_error) if last_error else "Unknown error"
            logger.error(f"MCP server failed to initialize - tools could not be listed. Last error: {error_msg}")
            try:
                await session.__aexit__(None, None, None)
            except:
                pass
            try:
                await stdio_ctx.__aexit__(None, None, None)
            except:
                pass
            return None
        
        # Store both the session and stdio context to keep them alive
        global_mcp_session = session
        global_mcp_stdio_ctx = stdio_ctx
        logger.info("MCP client session created successfully")
        return session
    except Exception as e:
        logger.error(f"Failed to create MCP client session: {e}")
        import traceback
        logger.debug(traceback.format_exc())
        global_mcp_session = None
        global_mcp_stdio_ctx = None
        return None

async def call_agent(user_prompt: str, system_prompt: str = None, files: list = None, model: str = None, temperature: float = 0.2) -> str:
    """Call Gemini MCP generate_content tool"""
    if not MCP_AVAILABLE:
        logger.warning("MCP not available for Gemini call")
        return ""
    
    try:
        session = await get_mcp_session()
        if session is None:
            logger.warning("Failed to get MCP session for Gemini call")
            return ""
        
        # Retry listing tools if it fails the first time
        # Use more retries and longer waits since MCP server might need time
        max_retries = 5
        tools = None
        for attempt in range(max_retries):
            try:
                tools = await session.list_tools()
                if tools and hasattr(tools, 'tools') and len(tools.tools) > 0:
                    break
                else:
                    raise ValueError("Empty tools list")
            except Exception as e:
                if attempt < max_retries - 1:
                    wait_time = 1.0 * (attempt + 1)  # Progressive wait
                    logger.debug(f"Failed to list tools (attempt {attempt + 1}/{max_retries}), waiting {wait_time}s...")
                    await asyncio.sleep(wait_time)
                else:
                    logger.error(f"❌ Failed to list MCP tools after {max_retries} attempts: {e}")
                    return ""
        
        if not tools or not hasattr(tools, 'tools'):
            logger.error("Invalid tools response from MCP server")
            return ""
        
        # Find generate_content tool
        generate_tool = None
        for tool in tools.tools:
            if tool.name == "generate_content" or "generate_content" in tool.name.lower():
                generate_tool = tool
                logger.info(f"Found Gemini MCP tool: {tool.name}")
                break
        
        if not generate_tool:
            logger.warning(f"Gemini MCP generate_content tool not found. Available tools: {[t.name for t in tools.tools]}")
            return ""
        
        # Prepare arguments
        arguments = {
            "user_prompt": user_prompt
        }
        if system_prompt:
            arguments["system_prompt"] = system_prompt
        if files:
            arguments["files"] = files
        if model:
            arguments["model"] = model
        if temperature is not None:
            arguments["temperature"] = temperature
        
        logger.info(f"πŸ”§ [MCP] Calling Gemini MCP tool '{generate_tool.name}' for: {user_prompt[:100]}...")
        logger.info(f"πŸ“‹ [MCP] Arguments: model={model}, temperature={temperature}, files={len(files) if files else 0}")
        result = await session.call_tool(generate_tool.name, arguments=arguments)
        
        # Parse result
        if hasattr(result, 'content') and result.content:
            for item in result.content:
                if hasattr(item, 'text'):
                    response_text = item.text.strip()
                    logger.info(f"βœ… [MCP] Gemini MCP returned response ({len(response_text)} chars)")
                    return response_text
        logger.warning("⚠️ [MCP] Gemini MCP returned empty or invalid result")
        return ""
    except Exception as e:
        logger.error(f"Gemini MCP call error: {e}")
        import traceback
        logger.debug(traceback.format_exc())
        return ""

# initialize_medical_model is now imported from model.py


def initialize_tts_model():
    """Initialize TTS model for text-to-speech"""
    global global_tts_model
    if not TTS_AVAILABLE:
        logger.warning("TTS library not installed. TTS features will be disabled.")
        return None
    if global_tts_model is None:
        try:
            logger.info("Initializing TTS model for voice generation...")
            global_tts_model = TTS(model_name=TTS_MODEL, progress_bar=False)
            logger.info("TTS model initialized successfully")
        except Exception as e:
            logger.warning(f"TTS model initialization failed: {e}")
            logger.warning("TTS features will be disabled. If pyworld dependency is missing, try: pip install TTS --no-deps && pip install coqui-tts")
            global_tts_model = None
    return global_tts_model

async def transcribe_audio_gemini(audio_path: str) -> str:
    """Transcribe audio using Gemini MCP"""
    if not MCP_AVAILABLE:
        return ""
    
    try:
        # Ensure we have an absolute path
        audio_path_abs = os.path.abspath(audio_path)
        
        # Prepare file object for Gemini MCP using path (as per Gemini MCP documentation)
        files = [{
            "path": audio_path_abs
        }]
        
        # Use exact prompts from Gemini MCP documentation
        system_prompt = "You are a professional transcription service. Provide accurate, well-formatted transcripts."
        user_prompt = "Please transcribe this audio file. Include speaker identification if multiple speakers are present, and format it with proper punctuation and paragraphs, remove mumble, ignore non-verbal noises."
        
        result = await call_agent(
            user_prompt=user_prompt,
            system_prompt=system_prompt,
            files=files,
            model=GEMINI_MODEL_LITE,  # Use lite model for transcription
            temperature=0.2
        )
        
        return result.strip()
    except Exception as e:
        logger.error(f"Gemini transcription error: {e}")
        import traceback
        logger.debug(traceback.format_exc())
        return ""

def transcribe_audio(audio):
    """Transcribe audio to text using Gemini MCP"""
    if audio is None:
        return ""
    
    try:
        # Handle file path (Gradio Audio component returns file path)
        if isinstance(audio, str):
            audio_path = audio
        elif isinstance(audio, tuple):
            # Handle tuple format (sample_rate, audio_data)
            sample_rate, audio_data = audio
            # Save to temp file
            with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
                sf.write(tmp_file.name, audio_data, samplerate=sample_rate)
                audio_path = tmp_file.name
        else:
            audio_path = audio
        
        # Use Gemini MCP for transcription
        if MCP_AVAILABLE:
            try:
                loop = asyncio.get_event_loop()
                if loop.is_running():
                    try:
                        import nest_asyncio
                        transcribed = nest_asyncio.run(transcribe_audio_gemini(audio_path))
                        if transcribed:
                            logger.info(f"Transcribed via Gemini MCP: {transcribed[:50]}...")
                            return transcribed
                    except Exception as e:
                        logger.error(f"Error in nested async transcription: {e}")
                else:
                    transcribed = loop.run_until_complete(transcribe_audio_gemini(audio_path))
                    if transcribed:
                        logger.info(f"Transcribed via Gemini MCP: {transcribed[:50]}...")
                        return transcribed
            except Exception as e:
                logger.error(f"Gemini MCP transcription error: {e}")
        
        logger.warning("Gemini MCP transcription not available")
        return ""
    except Exception as e:
        logger.error(f"Transcription error: {e}")
        return ""

async def generate_speech_mcp(text: str) -> str:
    """Generate speech using MCP TTS tool"""
    if not MCP_AVAILABLE:
        return None
    
    try:
        # Get MCP session
        session = await get_mcp_session()
        if session is None:
            return None
        
        # Find TTS tool
        tools = await session.list_tools()
        tts_tool = None
        for tool in tools.tools:
            if "tts" in tool.name.lower() or "speech" in tool.name.lower() or "synthesize" in tool.name.lower():
                tts_tool = tool
                logger.info(f"Found MCP TTS tool: {tool.name}")
                break
        
        if tts_tool:
            result = await session.call_tool(
                tts_tool.name,
                arguments={"text": text, "language": "en"}
            )
            
            # Parse result - MCP might return audio data or file path
            if hasattr(result, 'content') and result.content:
                for item in result.content:
                    if hasattr(item, 'text'):
                        # If it's a file path
                        if os.path.exists(item.text):
                            return item.text
                    elif hasattr(item, 'data') and item.data:
                        # If it's binary audio data, save it
                        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
                            tmp_file.write(item.data)
                            return tmp_file.name
        return None
    except Exception as e:
        logger.debug(f"MCP TTS error: {e}")
        return None

def generate_speech(text: str):
    """Generate speech from text using TTS model (with MCP fallback)"""
    if not text or len(text.strip()) == 0:
        return None
    
    # Try MCP first if available
    if MCP_AVAILABLE:
        try:
            loop = asyncio.get_event_loop()
            if loop.is_running():
                try:
                    import nest_asyncio
                    audio_path = nest_asyncio.run(generate_speech_mcp(text))
                    if audio_path:
                        logger.info("Generated speech via MCP")
                        return audio_path
                except:
                    pass
            else:
                audio_path = loop.run_until_complete(generate_speech_mcp(text))
                if audio_path:
                    logger.info("Generated speech via MCP")
                    return audio_path
        except Exception as e:
            logger.debug(f"MCP TTS not available: {e}")
    
    # Fallback to local TTS model
    if not TTS_AVAILABLE:
        logger.error("TTS library not installed. Please install TTS to use voice generation.")
        return None
    
    global global_tts_model
    if global_tts_model is None:
        initialize_tts_model()
    
    if global_tts_model is None:
        logger.error("TTS model not available. Please check dependencies.")
        return None
    
    try:
        # Generate audio
        wav = global_tts_model.tts(text)
        
        # Save to temporary file
        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
            sf.write(tmp_file.name, wav, samplerate=22050)
            return tmp_file.name
    except Exception as e:
        logger.error(f"TTS error: {e}")
        return None

def format_prompt_manually(messages: list, tokenizer) -> str:
    """Manually format prompt for models without chat template"""
    prompt_parts = []
    
    # Combine system and user messages into a single instruction
    system_content = ""
    user_content = ""
    
    for msg in messages:
        role = msg.get("role", "user")
        content = msg.get("content", "")
        
        if role == "system":
            system_content = content
        elif role == "user":
            user_content = content
        elif role == "assistant":
            # Skip assistant messages in history for now (can be added if needed)
            pass
    
    # Format for MedAlpaca/LLaMA-based medical models
    # Common format: Instruction + Input -> Response
    if system_content:
        prompt = f"{system_content}\n\nQuestion: {user_content}\n\nAnswer:"
    else:
        prompt = f"Question: {user_content}\n\nAnswer:"
    
    return prompt

def detect_language(text: str) -> str:
    """Detect language of input text"""
    try:
        lang = detect(text)
        return lang
    except LangDetectException:
        return "en"  # Default to English if detection fails

def format_url_as_domain(url: str) -> str:
    """Format URL as simple domain name (e.g., www.mayoclinic.org)"""
    if not url:
        return ""
    try:
        from urllib.parse import urlparse
        parsed = urlparse(url)
        domain = parsed.netloc or parsed.path
        # Remove www. prefix if present, but keep it for display
        if domain.startswith('www.'):
            return domain
        elif domain:
            return domain
        return url
    except Exception:
        # Fallback: try to extract domain manually
        if '://' in url:
            domain = url.split('://')[1].split('/')[0]
            return domain
        return url

async def translate_text_gemini(text: str, target_lang: str = "en", source_lang: str = None) -> str:
    """Translate text using Gemini MCP"""
    if source_lang:
        user_prompt = f"Translate the following {source_lang} text to {target_lang}. Only provide the translation, no explanations:\n\n{text}"
    else:
        user_prompt = f"Translate the following text to {target_lang}. Only provide the translation, no explanations:\n\n{text}"
    
    # Use concise system prompt
    system_prompt = "You are a professional translator. Translate accurately and concisely."
    
    result = await call_agent(
        user_prompt=user_prompt,
        system_prompt=system_prompt,
        model=GEMINI_MODEL_LITE,  # Use lite model for translation
        temperature=0.2
    )
    
    return result.strip()

def translate_text(text: str, target_lang: str = "en", source_lang: str = None) -> str:
    """Translate text using Gemini MCP"""
    if not MCP_AVAILABLE:
        logger.warning("Gemini MCP not available for translation")
        return text  # Return original text if translation fails
    
    try:
        loop = asyncio.get_event_loop()
        if loop.is_running():
            try:
                import nest_asyncio
                translated = nest_asyncio.run(translate_text_gemini(text, target_lang, source_lang))
                if translated:
                    logger.info(f"Translated via Gemini MCP: {translated[:50]}...")
                    return translated
            except Exception as e:
                logger.error(f"Error in nested async translation: {e}")
        else:
            translated = loop.run_until_complete(translate_text_gemini(text, target_lang, source_lang))
            if translated:
                logger.info(f"Translated via Gemini MCP: {translated[:50]}...")
                return translated
    except Exception as e:
        logger.error(f"Gemini MCP translation error: {e}")
    
    # Return original text if translation fails
    return text

async def search_web_mcp_tool(query: str, max_results: int = 5) -> list:
    """Search web using MCP web search tool (e.g., DuckDuckGo MCP server)"""
    if not MCP_AVAILABLE:
        return []
    
    try:
        session = await get_mcp_session()
        if session is None:
            return []
        
        # Retry listing tools if it fails the first time
        max_retries = 3
        tools = None
        for attempt in range(max_retries):
            try:
                tools = await session.list_tools()
                break
            except Exception as e:
                if attempt < max_retries - 1:
                    await asyncio.sleep(0.5 * (attempt + 1))
                else:
                    logger.error(f"Failed to list MCP tools after {max_retries} attempts: {e}")
                    return []
        
        if not tools or not hasattr(tools, 'tools'):
            return []
        
        # Look for web search tools (DuckDuckGo, search, etc.)
        search_tool = None
        for tool in tools.tools:
            tool_name_lower = tool.name.lower()
            if any(keyword in tool_name_lower for keyword in ["search", "duckduckgo", "ddg", "web"]):
                search_tool = tool
                logger.info(f"Found web search MCP tool: {tool.name}")
                break
        
        if search_tool:
            try:
                logger.info(f"πŸ” [MCP] Using web search MCP tool '{search_tool.name}' for: {query[:100]}...")
                # Call the search tool
                result = await session.call_tool(
                    search_tool.name,
                    arguments={"query": query, "max_results": max_results}
                )
            
                # Parse result
                web_content = []
                if hasattr(result, 'content') and result.content:
                    for item in result.content:
                        if hasattr(item, 'text'):
                            try:
                                data = json.loads(item.text)
                                if isinstance(data, list):
                                    for entry in data[:max_results]:
                                        web_content.append({
                                            'title': entry.get('title', ''),
                                            'url': entry.get('url', entry.get('href', '')),
                                            'content': entry.get('body', entry.get('snippet', entry.get('content', '')))
                                        })
                                elif isinstance(data, dict):
                                    if 'results' in data:
                                        for entry in data['results'][:max_results]:
                                            web_content.append({
                                                'title': entry.get('title', ''),
                                                'url': entry.get('url', entry.get('href', '')),
                                                'content': entry.get('body', entry.get('snippet', entry.get('content', '')))
                                            })
                                    else:
                                        web_content.append({
                                            'title': data.get('title', ''),
                                            'url': data.get('url', data.get('href', '')),
                                            'content': data.get('body', data.get('snippet', data.get('content', '')))
                                        })
                            except json.JSONDecodeError:
                                # If not JSON, treat as plain text
                                web_content.append({
                                    'title': '',
                                    'url': '',
                                    'content': item.text[:1000]
                                })
                
                if web_content:
                    logger.info(f"βœ… [MCP] Web search MCP tool returned {len(web_content)} results")
                    return web_content
            except Exception as e:
                logger.error(f"Error calling web search MCP tool: {e}")
        
        return []
    except Exception as e:
        logger.error(f"Web search MCP tool error: {e}")
        return []

async def search_web_mcp(query: str, max_results: int = 5) -> list:
    """Search web using MCP tools - tries web search MCP tool first, then falls back to direct search"""
    # First try to use a dedicated web search MCP tool (like DuckDuckGo MCP server)
    results = await search_web_mcp_tool(query, max_results)
    if results:
        logger.info(f"βœ… Web search via MCP tool: found {len(results)} results")
        return results
    
    # If no web search MCP tool available, use direct search (ddgs)
    # Note: Gemini MCP doesn't have web search capability, so we use direct API
    # The results will then be summarized using Gemini MCP
    logger.info("ℹ️ [Direct API] No web search MCP tool found, using direct DuckDuckGo search (results will be summarized with Gemini MCP)")
    return search_web_fallback(query, max_results)

def search_web_fallback(query: str, max_results: int = 5) -> list:
    """Fallback web search using DuckDuckGo directly (when MCP is not available)"""
    logger.info(f"πŸ” [Direct API] Performing web search using DuckDuckGo API for: {query[:100]}...")
    # Always import here to ensure availability
    try:
        from ddgs import DDGS
        import requests
        from bs4 import BeautifulSoup
    except ImportError:
        logger.error("Fallback dependencies (ddgs, requests, beautifulsoup4) not available")
        return []
    
    try:
        with DDGS() as ddgs:
            results = list(ddgs.text(query, max_results=max_results))
            web_content = []
            for result in results:
                try:
                    url = result.get('href', '')
                    title = result.get('title', '')
                    snippet = result.get('body', '')
                    
                    # Try to fetch full content
                    try:
                        response = requests.get(url, timeout=5, headers={'User-Agent': 'Mozilla/5.0'})
                        if response.status_code == 200:
                            soup = BeautifulSoup(response.content, 'html.parser')
                            # Extract main content
                            for script in soup(["script", "style"]):
                                script.decompose()
                            text = soup.get_text()
                            # Clean and limit text
                            lines = (line.strip() for line in text.splitlines())
                            chunks = (phrase.strip() for line in lines for phrase in line.split("  "))
                            text = ' '.join(chunk for chunk in chunks if chunk)
                            if len(text) > 1000:
                                text = text[:1000] + "..."
                            web_content.append({
                                'title': title,
                                'url': url,
                                'content': snippet + "\n" + text[:500] if text else snippet
                            })
                        else:
                            web_content.append({
                                'title': title,
                                'url': url,
                                'content': snippet
                            })
                    except:
                        web_content.append({
                            'title': title,
                            'url': url,
                            'content': snippet
                        })
                except Exception as e:
                    logger.error(f"Error processing search result: {e}")
                    continue
            logger.info(f"βœ… [Direct API] Web search completed: {len(web_content)} results")
            return web_content
    except Exception as e:
        logger.error(f"❌ [Direct API] Web search error: {e}")
        return []

def search_web(query: str, max_results: int = 5) -> list:
    """Search web using MCP tools (synchronous wrapper) - prioritizes MCP over direct ddgs"""
    # Always try MCP first if available
    if MCP_AVAILABLE:
        try:
            # Run async MCP search
            try:
                loop = asyncio.get_event_loop()
            except RuntimeError:
                loop = asyncio.new_event_loop()
                asyncio.set_event_loop(loop)
            
            if loop.is_running():
                # If loop is already running, use nest_asyncio or create new thread
                try:
                    import nest_asyncio
                    results = nest_asyncio.run(search_web_mcp(query, max_results))
                    if results:  # Only return if we got results from MCP
                        return results
                except (ImportError, AttributeError):
                    # Fallback: run in thread
                    import concurrent.futures
                    with concurrent.futures.ThreadPoolExecutor() as executor:
                        future = executor.submit(asyncio.run, search_web_mcp(query, max_results))
                        results = future.result(timeout=30)
                        if results:  # Only return if we got results from MCP
                            return results
            else:
                results = loop.run_until_complete(search_web_mcp(query, max_results))
                if results:  # Only return if we got results from MCP
                    return results
        except Exception as e:
            logger.error(f"Error running async MCP search: {e}")
    
    # Only use ddgs fallback if MCP is not available or returned no results
    logger.info("ℹ️ [Direct API] Falling back to direct DuckDuckGo search (MCP unavailable or returned no results)")
    return search_web_fallback(query, max_results)

async def summarize_web_content_gemini(content_list: list, query: str) -> str:
    """Summarize web search results using Gemini MCP"""
    logger.info(f"πŸ“ [MCP] Summarizing {len(content_list)} web search results using Gemini MCP...")
    combined_content = "\n\n".join([f"Source: {item['title']}\n{item['content']}" for item in content_list[:3]])
    
    user_prompt = f"""Summarize the following web search results related to the query: "{query}"

Extract key medical information, facts, and insights. Be concise and focus on reliable information.

Search Results:
{combined_content}

Summary:"""
    
    # Use concise system prompt
    system_prompt = "You are a medical information summarizer. Extract and summarize key medical facts accurately."
    
    result = await call_agent(
        user_prompt=user_prompt,
        system_prompt=system_prompt,
        model=GEMINI_MODEL,  # Use full model for summarization
        temperature=0.5
    )
    
    if result:
        logger.info(f"βœ… [MCP] Web content summarized successfully using Gemini MCP ({len(result)} chars)")
    else:
        logger.warning("⚠️ [MCP] Gemini MCP summarization returned empty result")
    
    return result.strip()

def summarize_web_content(content_list: list, query: str) -> str:
    """Summarize web search results using Gemini MCP"""
    if not MCP_AVAILABLE:
        logger.warning("Gemini MCP not available for summarization")
        # Fallback: return first result's content
        if content_list:
            return content_list[0].get('content', '')[:500]
        return ""
    
    try:
        loop = asyncio.get_event_loop()
        if loop.is_running():
            try:
                import nest_asyncio
                summary = nest_asyncio.run(summarize_web_content_gemini(content_list, query))
                if summary:
                    return summary
            except Exception as e:
                logger.error(f"Error in nested async summarization: {e}")
        else:
            summary = loop.run_until_complete(summarize_web_content_gemini(content_list, query))
            if summary:
                return summary
    except Exception as e:
        logger.error(f"Gemini MCP summarization error: {e}")
    
    # Fallback: return first result's content
    if content_list:
        return content_list[0].get('content', '')[:500]
    return ""

# get_llm_for_rag is now imported from model.py as get_llm_for_rag_gpu

async def autonomous_reasoning_gemini(query: str) -> dict:
    """Autonomous reasoning using Gemini MCP"""
    logger.info(f"🧠 [MCP] Analyzing query with Gemini MCP: {query[:100]}...")
    reasoning_prompt = f"""Analyze this medical query and provide structured reasoning:

Query: "{query}"

Analyze:
1. Query Type: (diagnosis, treatment, drug_info, symptom_analysis, research, general_info)
2. Complexity: (simple, moderate, complex, multi_faceted)
3. Information Needs: What specific information is required?
4. Requires RAG: (yes/no) - Does this need document context?
5. Requires Web Search: (yes/no) - Does this need current/updated information?
6. Sub-questions: Break down into key sub-questions if complex

Respond in JSON format:
{{
    "query_type": "...",
    "complexity": "...",
    "information_needs": ["..."],
    "requires_rag": true/false,
    "requires_web_search": true/false,
    "sub_questions": ["..."]
}}"""
    
    # Use concise system prompt
    system_prompt = "You are a medical reasoning system. Analyze queries systematically and provide structured JSON responses."
    
    response = await call_agent(
        user_prompt=reasoning_prompt,
        system_prompt=system_prompt,
        model=GEMINI_MODEL,  # Use full model for reasoning
        temperature=0.3
    )
    
    # Parse JSON response (with fallback)
    try:
        # Extract JSON from response
        json_start = response.find('{')
        json_end = response.rfind('}') + 1
        if json_start >= 0 and json_end > json_start:
            reasoning = json.loads(response[json_start:json_end])
        else:
            raise ValueError("No JSON found")
    except:
        # Fallback reasoning
        reasoning = {
            "query_type": "general_info",
            "complexity": "moderate",
            "information_needs": ["medical information"],
            "requires_rag": True,
            "requires_web_search": False,
            "sub_questions": [query]
        }
    
    logger.info(f"Reasoning analysis: {reasoning}")
    return reasoning

def autonomous_reasoning(query: str, history: list) -> dict:
    """
    Autonomous reasoning: Analyze query complexity, intent, and information needs.
    Returns reasoning analysis with query type, complexity, and required information sources.
    Uses Gemini MCP for reasoning.
    """
    if not MCP_AVAILABLE:
        logger.warning("⚠️ Gemini MCP not available for reasoning, using fallback")
        # Fallback reasoning
        return {
            "query_type": "general_info",
            "complexity": "moderate",
            "information_needs": ["medical information"],
            "requires_rag": True,
            "requires_web_search": False,
            "sub_questions": [query]
        }
    
    try:
        logger.info("πŸ€” [MCP] Using Gemini MCP for autonomous reasoning...")
        loop = asyncio.get_event_loop()
        if loop.is_running():
            try:
                import nest_asyncio
                reasoning = nest_asyncio.run(autonomous_reasoning_gemini(query))
                if reasoning and reasoning.get("query_type") != "general_info":  # Check if we got real reasoning
                    logger.info(f"βœ… [MCP] Gemini MCP reasoning successful: {reasoning.get('query_type')}, complexity: {reasoning.get('complexity')}")
                    return reasoning
                else:
                    logger.warning("⚠️ [MCP] Gemini MCP returned fallback reasoning, using it anyway")
                    return reasoning
            except Exception as e:
                logger.error(f"❌ Error in nested async reasoning: {e}")
                import traceback
                logger.debug(traceback.format_exc())
        else:
            reasoning = loop.run_until_complete(autonomous_reasoning_gemini(query))
            if reasoning and reasoning.get("query_type") != "general_info":
                logger.info(f"βœ… [MCP] Gemini MCP reasoning successful: {reasoning.get('query_type')}, complexity: {reasoning.get('complexity')}")
                return reasoning
            else:
                logger.warning("⚠️ [MCP] Gemini MCP returned fallback reasoning, using it anyway")
                return reasoning
    except Exception as e:
        logger.error(f"❌ Gemini MCP reasoning error: {e}")
        import traceback
        logger.debug(traceback.format_exc())
    
    # Fallback reasoning only if all attempts failed
    logger.warning("⚠️ Falling back to default reasoning")
    return {
        "query_type": "general_info",
        "complexity": "moderate",
        "information_needs": ["medical information"],
        "requires_rag": True,
        "requires_web_search": False,
        "sub_questions": [query]
    }

def create_execution_plan(reasoning: dict, query: str, has_rag_index: bool) -> dict:
    """
    Planning: Create multi-step execution plan based on reasoning analysis.
    Returns execution plan with steps and strategy.
    """
    plan = {
        "steps": [],
        "strategy": "sequential",
        "iterations": 1
    }
    
    # Determine execution strategy
    if reasoning["complexity"] in ["complex", "multi_faceted"]:
        plan["strategy"] = "iterative"
        plan["iterations"] = 2
    
    # Step 1: Language detection and translation
    plan["steps"].append({
        "step": 1,
        "action": "detect_language",
        "description": "Detect query language and translate if needed"
    })
    
    # Step 2: RAG retrieval (if needed and available)
    if reasoning.get("requires_rag", True) and has_rag_index:
        plan["steps"].append({
            "step": 2,
            "action": "rag_retrieval",
            "description": "Retrieve relevant document context",
            "parameters": {"top_k": 15, "merge_threshold": 0.5}
        })
    
    # Step 3: Web search (if needed)
    if reasoning.get("requires_web_search", False):
        plan["steps"].append({
            "step": 3,
            "action": "web_search",
            "description": "Search web for current/updated information",
            "parameters": {"max_results": 5}
        })
    
    # Step 4: Sub-question processing (if complex)
    if reasoning.get("sub_questions") and len(reasoning["sub_questions"]) > 1:
        plan["steps"].append({
            "step": 4,
            "action": "multi_step_reasoning",
            "description": "Process sub-questions iteratively",
            "sub_questions": reasoning["sub_questions"]
        })
    
    # Step 5: Synthesis and answer generation
    plan["steps"].append({
        "step": len(plan["steps"]) + 1,
        "action": "synthesize_answer",
        "description": "Generate comprehensive answer from all sources"
    })
    
    # Step 6: Self-reflection (for complex queries)
    if reasoning["complexity"] in ["complex", "multi_faceted"]:
        plan["steps"].append({
            "step": len(plan["steps"]) + 1,
            "action": "self_reflection",
            "description": "Evaluate answer quality and completeness"
        })
    
    logger.info(f"Execution plan created: {len(plan['steps'])} steps")
    return plan

def autonomous_execution_strategy(reasoning: dict, plan: dict, use_rag: bool, use_web_search: bool, has_rag_index: bool) -> dict:
    """
    Autonomous execution: Make decisions on information gathering strategy.
    Only suggests web search override, but respects user's RAG disable setting.
    """
    strategy = {
        "use_rag": use_rag,  # Respect user's RAG setting
        "use_web_search": use_web_search,
        "reasoning_override": False,
        "rationale": ""
    }
    
    # Only suggest web search override (RAG requires documents, so we respect user's choice)
    if reasoning.get("requires_web_search", False) and not use_web_search:
        strategy["use_web_search"] = True
        strategy["reasoning_override"] = True
        strategy["rationale"] += "Reasoning suggests web search for current information. "
    
    # Note: We don't override RAG setting because:
    # 1. User may have explicitly disabled it
    # 2. RAG requires documents to be uploaded
    # 3. We should respect user's explicit choice
    
    if strategy["reasoning_override"]:
        logger.info(f"Autonomous override: {strategy['rationale']}")
    
    return strategy

async def self_reflection_gemini(answer: str, query: str) -> dict:
    """Self-reflection using Gemini MCP"""
    reflection_prompt = f"""Evaluate this medical answer for quality and completeness:

Query: "{query}"
Answer: "{answer[:1000]}"

Evaluate:
1. Completeness: Does it address all aspects of the query?
2. Accuracy: Is the medical information accurate?
3. Clarity: Is it clear and well-structured?
4. Sources: Are sources cited appropriately?
5. Missing Information: What important information might be missing?

Respond in JSON:
{{
    "completeness_score": 0-10,
    "accuracy_score": 0-10,
    "clarity_score": 0-10,
    "overall_score": 0-10,
    "missing_aspects": ["..."],
    "improvement_suggestions": ["..."]
}}"""
    
    # Use concise system prompt
    system_prompt = "You are a medical answer quality evaluator. Provide honest, constructive feedback."
    
    response = await call_agent(
        user_prompt=reflection_prompt,
        system_prompt=system_prompt,
        model=GEMINI_MODEL,  # Use full model for reflection
        temperature=0.3
    )
    
    try:
        json_start = response.find('{')
        json_end = response.rfind('}') + 1
        if json_start >= 0 and json_end > json_start:
            reflection = json.loads(response[json_start:json_end])
        else:
            reflection = {"overall_score": 7, "improvement_suggestions": []}
    except:
        reflection = {"overall_score": 7, "improvement_suggestions": []}
    
    logger.info(f"Self-reflection score: {reflection.get('overall_score', 'N/A')}")
    return reflection

def self_reflection(answer: str, query: str, reasoning: dict) -> dict:
    """
    Self-reflection: Evaluate answer quality and completeness.
    Returns reflection with quality score and improvement suggestions.
    """
    if not MCP_AVAILABLE:
        logger.warning("Gemini MCP not available for reflection, using fallback")
        return {"overall_score": 7, "improvement_suggestions": []}
    
    try:
        loop = asyncio.get_event_loop()
        if loop.is_running():
            try:
                import nest_asyncio
                return nest_asyncio.run(self_reflection_gemini(answer, query))
            except Exception as e:
                logger.error(f"Error in nested async reflection: {e}")
        else:
            return loop.run_until_complete(self_reflection_gemini(answer, query))
    except Exception as e:
        logger.error(f"Gemini MCP reflection error: {e}")
    
    return {"overall_score": 7, "improvement_suggestions": []}

async def parse_document_gemini(file_path: str, file_extension: str) -> str:
    """Parse document using Gemini MCP"""
    if not MCP_AVAILABLE:
        return ""
    
    try:
        # Read file and encode to base64
        with open(file_path, 'rb') as f:
            file_content = base64.b64encode(f.read()).decode('utf-8')
        
        # Determine MIME type from file extension
        mime_type_map = {
            '.pdf': 'application/pdf',
            '.doc': 'application/msword',
            '.docx': 'application/vnd.openxmlformats-officedocument.wordprocessingml.document',
            '.txt': 'text/plain',
            '.md': 'text/markdown',
            '.json': 'application/json',
            '.xml': 'application/xml',
            '.csv': 'text/csv'
        }
        mime_type = mime_type_map.get(file_extension, 'application/octet-stream')
        
        # Prepare file object for Gemini MCP (use content for base64)
        files = [{
            "content": file_content,
            "type": mime_type
        }]
        
        # Use concise system prompt
        system_prompt = "Extract all text content from the document accurately."
        user_prompt = "Extract all text content from this document. Return only the extracted text, preserving structure and formatting where possible."
        
        result = await call_agent(
            user_prompt=user_prompt,
            system_prompt=system_prompt,
            files=files,
            model=GEMINI_MODEL_LITE,  # Use lite model for parsing
            temperature=0.2
        )
        
        return result.strip()
    except Exception as e:
        logger.error(f"Gemini document parsing error: {e}")
        import traceback
        logger.debug(traceback.format_exc())
        return ""

def extract_text_from_document(file):
    """Extract text from document using Gemini MCP"""
    file_name = file.name
    file_extension = os.path.splitext(file_name)[1].lower()
    
    # Handle text files directly
    if file_extension == '.txt':
        text = file.read().decode('utf-8')
        return text, len(text.split()), None
    
    # For PDF, Word, and other documents, use Gemini MCP
    # Save file to temporary location for processing
    try:
        with tempfile.NamedTemporaryFile(delete=False, suffix=file_extension) as tmp_file:
            # Write file content to temp file
            file.seek(0)  # Reset file pointer
            tmp_file.write(file.read())
            tmp_file_path = tmp_file.name
        
        # Use Gemini MCP to parse document
        if MCP_AVAILABLE:
            try:
                loop = asyncio.get_event_loop()
                if loop.is_running():
                    try:
                        import nest_asyncio
                        text = nest_asyncio.run(parse_document_gemini(tmp_file_path, file_extension))
                    except Exception as e:
                        logger.error(f"Error in nested async document parsing: {e}")
                        text = ""
                else:
                    text = loop.run_until_complete(parse_document_gemini(tmp_file_path, file_extension))
                
                # Clean up temp file
                try:
                    os.unlink(tmp_file_path)
                except:
                    pass
                
                if text:
                    return text, len(text.split()), None
                else:
                    return None, 0, ValueError(f"Failed to extract text from {file_extension} file using Gemini MCP")
            except Exception as e:
                logger.error(f"Gemini MCP document parsing error: {e}")
                # Clean up temp file
                try:
                    os.unlink(tmp_file_path)
                except:
                    pass
                return None, 0, ValueError(f"Error parsing {file_extension} file: {str(e)}")
        else:
            # Clean up temp file
            try:
                os.unlink(tmp_file_path)
            except:
                pass
            return None, 0, ValueError(f"Gemini MCP not available. Cannot parse {file_extension} files.")
    except Exception as e:
        logger.error(f"Error processing document: {e}")
        return None, 0, ValueError(f"Error processing {file_extension} file: {str(e)}")

def create_or_update_index(files, request: gr.Request):
    global global_file_info
    
    if not files:
        return "Please provide files.", ""
    
    start_time = time.time()
    user_id = request.session_hash
    save_dir = f"./{user_id}_index"
    # Initialize LlamaIndex modules - use GPU functions for model inference only
    llm = get_llm_for_rag_gpu()
    embed_model = get_embedding_model_gpu()
    Settings.llm = llm
    Settings.embed_model = embed_model
    file_stats = []
    new_documents = []
    
    for file in tqdm(files, desc="Processing files"):
        file_basename = os.path.basename(file.name)
        text, word_count, error = extract_text_from_document(file)
        if error:
            logger.error(f"Error processing file {file_basename}: {str(error)}")
            file_stats.append({
                "name": file_basename,
                "words": 0,
                "status": f"error: {str(error)}"
            })
            continue
        
        doc = LlamaDocument(
            text=text,
            metadata={
                "file_name": file_basename,
                "word_count": word_count,
                "source": "user_upload"
            }
        )
        new_documents.append(doc)
        
        file_stats.append({
            "name": file_basename,
            "words": word_count,
            "status": "processed"
        })
        
        global_file_info[file_basename] = {
            "word_count": word_count,
            "processed_at": time.time()
        }
    
    node_parser = HierarchicalNodeParser.from_defaults(
        chunk_sizes=[2048, 512, 128],  
        chunk_overlap=20         
    )
    logger.info(f"Parsing {len(new_documents)} documents into hierarchical nodes")
    new_nodes = node_parser.get_nodes_from_documents(new_documents)
    new_leaf_nodes = get_leaf_nodes(new_nodes)
    new_root_nodes = get_root_nodes(new_nodes)
    logger.info(f"Generated {len(new_nodes)} total nodes ({len(new_root_nodes)} root, {len(new_leaf_nodes)} leaf)")
    
    if os.path.exists(save_dir):
        logger.info(f"Loading existing index from {save_dir}")
        storage_context = StorageContext.from_defaults(persist_dir=save_dir)
        index = load_index_from_storage(storage_context, settings=Settings)
        docstore = storage_context.docstore
        
        docstore.add_documents(new_nodes)
        for node in tqdm(new_leaf_nodes, desc="Adding leaf nodes to index"):
            index.insert_nodes([node])
            
        total_docs = len(docstore.docs)
        logger.info(f"Updated index with {len(new_nodes)} new nodes from {len(new_documents)} files")
    else:
        logger.info("Creating new index")
        docstore = SimpleDocumentStore()
        storage_context = StorageContext.from_defaults(docstore=docstore)
        docstore.add_documents(new_nodes)
        
        index = VectorStoreIndex(
            new_leaf_nodes, 
            storage_context=storage_context, 
            settings=Settings
        )
        total_docs = len(new_documents)
        logger.info(f"Created new index with {len(new_nodes)} nodes from {len(new_documents)} files")
    
    index.storage_context.persist(persist_dir=save_dir)
    # custom outputs after processing files
    file_list_html = "<div class='file-list'>"
    for stat in file_stats:
        status_color = "#4CAF50" if stat["status"] == "processed" else "#f44336"
        file_list_html += f"<div><span style='color:{status_color}'>●</span> {stat['name']} - {stat['words']} words</div>"
    file_list_html += "</div>"
    processing_time = time.time() - start_time
    stats_output = f"<div class='stats-box'>"
    stats_output += f"βœ“ Processed {len(files)} files in {processing_time:.2f} seconds<br>"
    stats_output += f"βœ“ Created {len(new_nodes)} nodes ({len(new_leaf_nodes)} leaf nodes)<br>"
    stats_output += f"βœ“ Total documents in index: {total_docs}<br>"
    stats_output += f"βœ“ Index saved to: {save_dir}<br>"
    stats_output += "</div>"
    output_container = f"<div class='info-container'>"
    output_container += file_list_html
    output_container += stats_output
    output_container += "</div>"
    return f"Successfully indexed {len(files)} files.", output_container

def stream_chat(
    message: str,
    history: list,
    system_prompt: str,
    temperature: float,
    max_new_tokens: int,
    top_p: float,
    top_k: int,
    penalty: float,
    retriever_k: int,
    merge_threshold: float,
    use_rag: bool,
    medical_model: str,
    use_web_search: bool,
    request: gr.Request
):
    if not request:
        yield history + [{"role": "assistant", "content": "Session initialization failed. Please refresh the page."}]
        return
    
    user_id = request.session_hash
    index_dir = f"./{user_id}_index"
    has_rag_index = os.path.exists(index_dir)
    
    # ===== AUTONOMOUS REASONING =====
    logger.info("πŸ€” Starting autonomous reasoning...")
    reasoning = autonomous_reasoning(message, history)
    
    # ===== PLANNING =====
    logger.info("πŸ“‹ Creating execution plan...")
    plan = create_execution_plan(reasoning, message, has_rag_index)
    
    # ===== AUTONOMOUS EXECUTION STRATEGY =====
    logger.info("🎯 Determining execution strategy...")
    execution_strategy = autonomous_execution_strategy(reasoning, plan, use_rag, use_web_search, has_rag_index)
    
    # Use autonomous strategy decisions (respect user's RAG setting)
    final_use_rag = execution_strategy["use_rag"] and has_rag_index  # Only use RAG if enabled AND documents exist
    final_use_web_search = execution_strategy["use_web_search"]
    
    # Show reasoning override message if applicable
    reasoning_note = ""
    if execution_strategy["reasoning_override"]:
        reasoning_note = f"\n\nπŸ’‘ *Autonomous Reasoning: {execution_strategy['rationale']}*"
    
    # Detect language and translate if needed (Step 1 of plan)
    original_lang = detect_language(message)
    original_message = message
    needs_translation = original_lang != "en"
    
    if needs_translation:
        logger.info(f"Detected non-English language: {original_lang}, translating to English...")
        message = translate_text(message, target_lang="en", source_lang=original_lang)
        logger.info(f"Translated query: {message}")
    
    # Initialize medical model
    medical_model_obj, medical_tokenizer = initialize_medical_model(medical_model)
    
    # Adjust system prompt based on RAG setting and reasoning
    if final_use_rag:
        base_system_prompt = system_prompt if system_prompt else "As a medical specialist, provide clinical and concise answers based on the provided medical documents and context."
    else:
        base_system_prompt = "As a medical specialist, provide short and concise clinical answers. Be brief and avoid lengthy explanations. Focus on key medical facts only."
    
    # Add reasoning context to system prompt for complex queries
    if reasoning["complexity"] in ["complex", "multi_faceted"]:
        base_system_prompt += f"\n\nQuery Analysis: This is a {reasoning['complexity']} {reasoning['query_type']} query. Address all sub-questions: {', '.join(reasoning.get('sub_questions', [])[:3])}"
    
    # ===== EXECUTION: RAG Retrieval (Step 2) =====
    rag_context = ""
    source_info = ""
    if final_use_rag and has_rag_index:
        # Use GPU function for embedding model
        embed_model = get_embedding_model_gpu()
        Settings.embed_model = embed_model
        storage_context = StorageContext.from_defaults(persist_dir=index_dir)
        index = load_index_from_storage(storage_context, settings=Settings)
        base_retriever = index.as_retriever(similarity_top_k=retriever_k)
        auto_merging_retriever = AutoMergingRetriever(
            base_retriever,
            storage_context=storage_context,
            simple_ratio_thresh=merge_threshold, 
            verbose=True
        )
        logger.info(f"Query: {message}")
        retrieval_start = time.time()
        merged_nodes = auto_merging_retriever.retrieve(message)
        logger.info(f"Retrieved {len(merged_nodes)} merged nodes in {time.time() - retrieval_start:.2f}s")
        merged_file_sources = {}
        for node in merged_nodes:
            if hasattr(node.node, 'metadata') and 'file_name' in node.node.metadata:
                file_name = node.node.metadata['file_name']
                if file_name not in merged_file_sources:
                    merged_file_sources[file_name] = 0
                merged_file_sources[file_name] += 1
        logger.info(f"Merged retrieval file distribution: {merged_file_sources}")
        rag_context = "\n\n".join([n.node.text for n in merged_nodes])
        if merged_file_sources:
            source_info = "\n\nRetrieved information from files: " + ", ".join(merged_file_sources.keys())
    
    # ===== EXECUTION: Web Search (Step 3) =====
    web_context = ""
    web_sources = []
    web_urls = []  # Store URLs for citations
    if final_use_web_search:
        logger.info("🌐 Performing web search (will use Gemini MCP for summarization)...")
        web_results = search_web(message, max_results=5)
        if web_results:
            logger.info(f"πŸ“Š Found {len(web_results)} web search results, now summarizing with Gemini MCP...")
            web_summary = summarize_web_content(web_results, message)
            if web_summary and len(web_summary) > 50:  # Check if we got a real summary
                logger.info(f"βœ… [MCP] Gemini MCP summarization successful ({len(web_summary)} chars)")
                web_context = f"\n\nAdditional Web Sources (summarized with Gemini MCP):\n{web_summary}"
            else:
                logger.warning("⚠️ [MCP] Gemini MCP summarization failed or returned empty, using raw results")
                # Fallback: use first result's content
                web_context = f"\n\nAdditional Web Sources:\n{web_results[0].get('content', '')[:500]}"
            web_sources = [r['title'] for r in web_results[:3]]
            # Extract unique URLs for citations
            web_urls = [r.get('url', '') for r in web_results if r.get('url')]
            logger.info(f"βœ… Web search completed: {len(web_results)} results, summarized with Gemini MCP")
        else:
            logger.warning("⚠️ Web search returned no results")
    
    # Build final context
    context_parts = []
    if rag_context:
        context_parts.append(f"Document Context:\n{rag_context}")
    if web_context:
        context_parts.append(web_context)
    
    full_context = "\n\n".join(context_parts) if context_parts else ""
    
    # Build system prompt
    if final_use_rag or final_use_web_search:
        formatted_system_prompt = f"{base_system_prompt}\n\n{full_context}{source_info}"
    else:
        formatted_system_prompt = base_system_prompt
    
    # Prepare messages
    messages = [{"role": "system", "content": formatted_system_prompt}]
    for entry in history:
        messages.append(entry)
    messages.append({"role": "user", "content": message})
    
    # Get EOS token and adjust stopping criteria
    eos_token_id = medical_tokenizer.eos_token_id
    if eos_token_id is None:
        eos_token_id = medical_tokenizer.pad_token_id
    
    # Increase max tokens for medical models (prevent early stopping)
    max_new_tokens = int(max_new_tokens) if isinstance(max_new_tokens, (int, float)) else 2048
    max_new_tokens = max(max_new_tokens, 1024)  # Minimum 1024 tokens for medical answers
    
    # Check if tokenizer has chat template, otherwise format manually
    if hasattr(medical_tokenizer, 'chat_template') and medical_tokenizer.chat_template is not None:
        try:
            prompt = medical_tokenizer.apply_chat_template(
                messages,
                tokenize=False,
                add_generation_prompt=True
            )
        except Exception as e:
            logger.warning(f"Chat template failed, using manual formatting: {e}")
            # Fallback to manual formatting
            prompt = format_prompt_manually(messages, medical_tokenizer)
    else:
        # Manual formatting for models without chat template
        prompt = format_prompt_manually(messages, medical_tokenizer)
    
    inputs = medical_tokenizer(prompt, return_tensors="pt").to(medical_model_obj.device)
    prompt_length = inputs['input_ids'].shape[1]
    
    stop_event = threading.Event()
    
    class StopOnEvent(StoppingCriteria):
        def __init__(self, stop_event):
            super().__init__()
            self.stop_event = stop_event

        def __call__(self, input_ids, scores, **kwargs):
            return self.stop_event.is_set()
    
    # Custom stopping criteria that doesn't stop on EOS too early
    class MedicalStoppingCriteria(StoppingCriteria):
        def __init__(self, eos_token_id, prompt_length, min_new_tokens=100):
            super().__init__()
            self.eos_token_id = eos_token_id
            self.prompt_length = prompt_length
            self.min_new_tokens = min_new_tokens

        def __call__(self, input_ids, scores, **kwargs):
            current_length = input_ids.shape[1]
            new_tokens = current_length - self.prompt_length
            last_token = input_ids[0, -1].item()
            
            # Don't stop on EOS if we haven't generated enough new tokens
            if new_tokens < self.min_new_tokens:
                return False
            # Allow EOS after minimum new tokens have been generated
            return last_token == self.eos_token_id
    
    stopping_criteria = StoppingCriteriaList([
        StopOnEvent(stop_event),
        MedicalStoppingCriteria(eos_token_id, prompt_length, min_new_tokens=100)
    ])
    
    streamer = TextIteratorStreamer(
        medical_tokenizer,
        skip_prompt=True,
        skip_special_tokens=True
    )
    
    temperature = float(temperature) if isinstance(temperature, (int, float)) else 0.7
    top_p = float(top_p) if isinstance(top_p, (int, float)) else 0.95
    top_k = int(top_k) if isinstance(top_k, (int, float)) else 50
    penalty = float(penalty) if isinstance(penalty, (int, float)) else 1.2
    
    # Call GPU function for model inference only
    thread = threading.Thread(
        target=generate_with_medswin,
        kwargs={
            "medical_model_obj": medical_model_obj,
            "medical_tokenizer": medical_tokenizer,
            "prompt": prompt,
            "max_new_tokens": max_new_tokens,
            "temperature": temperature,
            "top_p": top_p,
            "top_k": top_k,
            "penalty": penalty,
            "eos_token_id": eos_token_id,
            "pad_token_id": medical_tokenizer.pad_token_id or eos_token_id,
            "stop_event": stop_event,
            "streamer": streamer,
            "stopping_criteria": stopping_criteria
        }
    )
    thread.start()
    
    updated_history = history + [
        {"role": "user", "content": original_message},
        {"role": "assistant", "content": ""}
    ]
    yield updated_history
    
    partial_response = ""
    try:
        for new_text in streamer:
            partial_response += new_text
            updated_history[-1]["content"] = partial_response
            yield updated_history
        
        # ===== SELF-REFLECTION (Step 6) =====
        if reasoning["complexity"] in ["complex", "multi_faceted"]:
            logger.info("πŸ” Performing self-reflection on answer quality...")
            reflection = self_reflection(partial_response, message, reasoning)
            
            # Add reflection note if score is low or improvements suggested
            if reflection.get("overall_score", 10) < 7 or reflection.get("improvement_suggestions"):
                reflection_note = f"\n\n---\n**Self-Reflection** (Score: {reflection.get('overall_score', 'N/A')}/10)"
                if reflection.get("improvement_suggestions"):
                    reflection_note += f"\nπŸ’‘ Suggestions: {', '.join(reflection['improvement_suggestions'][:2])}"
                partial_response += reflection_note
                updated_history[-1]["content"] = partial_response
        
        # Add reasoning note if autonomous override occurred
        if reasoning_note:
            partial_response = reasoning_note + "\n\n" + partial_response
            updated_history[-1]["content"] = partial_response
        
        # Translate back if needed
        if needs_translation and partial_response:
            logger.info(f"Translating response back to {original_lang}...")
            translated_response = translate_text(partial_response, target_lang=original_lang, source_lang="en")
            partial_response = translated_response
        
        # Add citations if web sources were used
        citations_text = ""
        if web_urls:
            # Get unique domains
            unique_urls = list(dict.fromkeys(web_urls))  # Preserve order, remove duplicates
            citation_links = []
            for url in unique_urls[:5]:  # Limit to 5 citations
                domain = format_url_as_domain(url)
                if domain:
                    # Create markdown link: [domain](url)
                    citation_links.append(f"[{domain}]({url})")
            
            if citation_links:
                citations_text = "\n\n**Sources:** " + ", ".join(citation_links)
        
        # Add speaker icon and citations to assistant message
        speaker_icon = ' πŸ”Š'
        partial_response_with_speaker = partial_response + citations_text + speaker_icon
        updated_history[-1]["content"] = partial_response_with_speaker
        
        yield updated_history
            
    except GeneratorExit:
        stop_event.set()
        thread.join()
        raise

def generate_speech_for_message(text: str):
    """Generate speech for a message and return audio file"""
    audio_path = generate_speech(text)
    if audio_path:
        return audio_path
    return None

def create_demo():
    with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
        gr.HTML(TITLE)
        gr.HTML(DESCRIPTION)
        
        with gr.Row(elem_classes="main-container"):
            with gr.Column(elem_classes="upload-section"):
                file_upload = gr.File(
                    file_count="multiple",
                    label="Drag and Drop Files Here",
                    file_types=[".pdf", ".txt", ".doc", ".docx", ".md", ".json", ".xml", ".csv"],
                    elem_id="file-upload"
                )
                upload_button = gr.Button("Upload & Index", elem_classes="upload-button")
                status_output = gr.Textbox(
                    label="Status",
                    placeholder="Upload files to start...",
                    interactive=False
                )
                file_info_output = gr.HTML(
                    label="File Information",
                    elem_classes="processing-info"
                )
                upload_button.click(
                    fn=create_or_update_index,
                    inputs=[file_upload],
                    outputs=[status_output, file_info_output]
                )
            
            with gr.Column(elem_classes="chatbot-container"):
                chatbot = gr.Chatbot(
                    height=500,
                    placeholder="Chat with MedSwin... Type your question below.",
                    show_label=False,
                    type="messages"
                )
                with gr.Row(elem_classes="input-row"):
                    message_input = gr.Textbox(
                        placeholder="Type your medical question here...",
                        show_label=False,
                        container=False,
                        lines=1,
                        scale=10
                    )
                    mic_button = gr.Audio(
                        sources=["microphone"],
                        type="filepath",
                        label="",
                        show_label=False,
                    container=False,
                    scale=1
                    )
                    submit_button = gr.Button("➀", elem_classes="submit-btn", scale=1)
                
                # Timer display for recording (shown below input row)
                recording_timer = gr.Textbox(
                    value="",
                    label="",
                        show_label=False,
                    interactive=False,
                    visible=False,
                        container=False,
                    elem_classes="recording-timer"
                    )
                
                # Handle microphone transcription
                import time
                recording_start_time = [None]
                
                def handle_recording_start():
                    """Called when recording starts"""
                    recording_start_time[0] = time.time()
                    return gr.update(visible=True, value="Recording... 0s")
                
                def handle_recording_stop(audio):
                    """Called when recording stops"""
                    recording_start_time[0] = None
                    if audio is None:
                        return gr.update(visible=False, value=""), ""
                    transcribed = transcribe_audio(audio)
                    return gr.update(visible=False, value=""), transcribed
                
                # Use JavaScript for timer updates (simpler than Gradio Timer)
                mic_button.start_recording(
                    fn=handle_recording_start,
                    outputs=[recording_timer]
                )
                
                mic_button.stop_recording(
                    fn=handle_recording_stop,
                    inputs=[mic_button],
                    outputs=[recording_timer, message_input]
                )
                
                # TTS component for generating speech from messages
                with gr.Row(visible=False) as tts_row:
                    tts_text = gr.Textbox(visible=False)
                    tts_audio = gr.Audio(label="Generated Speech", visible=False)
                
                # Function to generate speech when speaker icon is clicked
                def generate_speech_from_chat(history):
                    """Extract last assistant message and generate speech"""
                    if not history or len(history) == 0:
                        return None
                    last_msg = history[-1]
                    if last_msg.get("role") == "assistant":
                        text = last_msg.get("content", "").replace(" πŸ”Š", "").strip()
                        if text:
                            audio_path = generate_speech(text)
                            return audio_path
                    return None
                
                # Add TTS button that appears when assistant responds
                tts_button = gr.Button("πŸ”Š Play Response", visible=False, size="sm")
                
                # Update TTS button visibility and generate speech
                def update_tts_button(history):
                    if history and len(history) > 0 and history[-1].get("role") == "assistant":
                        return gr.update(visible=True)
                    return gr.update(visible=False)
                
                chatbot.change(
                    fn=update_tts_button,
                    inputs=[chatbot],
                    outputs=[tts_button]
                )
                
                tts_button.click(
                    fn=generate_speech_from_chat,
                    inputs=[chatbot],
                    outputs=[tts_audio]
                )
                
                with gr.Accordion("βš™οΈ Advanced Settings", open=False):
                    with gr.Row():
                        use_rag = gr.Checkbox(
                            value=False,
                            label="Enable Document RAG",
                            info="Answer based on uploaded documents (requires document upload)"
                        )
                        use_web_search = gr.Checkbox(
                            value=False,
                            label="Enable Web Search (MCP)",
                            info="Fetch knowledge from online medical resources"
                        )
                    
                    medical_model = gr.Radio(
                        choices=list(MEDSWIN_MODELS.keys()),
                        value=DEFAULT_MEDICAL_MODEL,
                        label="Medical Model",
                        info="MedSwin TA (default), others download on first use"
                    )
                    
                    system_prompt = gr.Textbox(
                        value="As a medical specialist, provide detailed and accurate answers based on the provided medical documents and context. Ensure all information is clinically accurate and cite sources when available.",
                        label="System Prompt",
                        lines=3
                    )
                    
                    with gr.Tab("Generation Parameters"):
                        temperature = gr.Slider(
                            minimum=0,
                            maximum=1,
                            step=0.1,
                            value=0.2,  
                            label="Temperature"
                        )
                        max_new_tokens = gr.Slider(
                            minimum=512,
                            maximum=4096,
                            step=128,
                            value=2048,
                            label="Max New Tokens",
                            info="Increased for medical models to prevent early stopping"
                        )
                        top_p = gr.Slider(
                            minimum=0.0,
                            maximum=1.0,
                            step=0.1,
                            value=0.7, 
                            label="Top P"
                        )
                        top_k = gr.Slider(
                            minimum=1,
                            maximum=100,  
                            step=1,
                            value=50,  
                            label="Top K"
                        )
                        penalty = gr.Slider(
                            minimum=0.0,
                            maximum=2.0,
                            step=0.1,
                            value=1.2,
                            label="Repetition Penalty"
                        )
                        
                    with gr.Tab("Retrieval Parameters"):
                        retriever_k = gr.Slider(
                            minimum=5,
                            maximum=30,
                            step=1,
                            value=15,
                            label="Initial Retrieval Size (Top K)"
                        )
                        merge_threshold = gr.Slider(
                            minimum=0.1,
                            maximum=0.9,
                            step=0.1,
                            value=0.5,
                            label="Merge Threshold (lower = more merging)"
                        )

                submit_button.click(
                    fn=stream_chat,
                    inputs=[
                        message_input, 
                        chatbot, 
                        system_prompt, 
                        temperature, 
                        max_new_tokens, 
                        top_p, 
                        top_k, 
                        penalty,
                        retriever_k,
                        merge_threshold,
                        use_rag,
                        medical_model,
                        use_web_search
                    ],
                    outputs=chatbot
                )
                
                message_input.submit(
                    fn=stream_chat,
                    inputs=[
                        message_input, 
                        chatbot, 
                        system_prompt, 
                        temperature, 
                        max_new_tokens, 
                        top_p, 
                        top_k, 
                        penalty,
                        retriever_k,
                        merge_threshold,
                        use_rag,
                        medical_model,
                        use_web_search
                    ],
                    outputs=chatbot
                )

    return demo

if __name__ == "__main__":
    # Preload models on startup
    logger.info("Preloading models on startup...")
    logger.info("Initializing default medical model (MedSwin TA)...")
    initialize_medical_model(DEFAULT_MEDICAL_MODEL)
    logger.info("Preloading TTS model...")
    try:
        initialize_tts_model()
        if global_tts_model is not None:
            logger.info("TTS model preloaded successfully!")
        else:
            logger.warning("TTS model not available - will use MCP or disable voice generation")
    except Exception as e:
        logger.warning(f"TTS model preloading failed: {e}")
        logger.warning("Text-to-speech will use MCP or be disabled")
    
    # Check Gemini MCP availability
    if MCP_AVAILABLE:
        logger.info("Gemini MCP is available for translation, summarization, document parsing, and transcription")
    else:
        logger.warning("Gemini MCP not available - translation, summarization, document parsing, and transcription features will be limited")
    
    logger.info("Model preloading complete!")
    demo = create_demo()
    demo.launch()