Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
d74506f
1
Parent(s):
b3797f0
Upd app
Browse files
README.md
CHANGED
|
@@ -8,7 +8,88 @@ sdk_version: 5.49.1
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
-
short_description: '
|
| 12 |
---
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
> Introduction: A medical app for MCP-1st-Birthday hackathon, integrate MCP searcher and document RAG
|
|
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
+
short_description: 'MedicalMCP RAG & Search with MedSwin'
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# 🩺 MedLLM Agent
|
| 15 |
+
|
| 16 |
+
**Advanced Medical AI Assistant** powered by fine-tuned MedSwin models with comprehensive knowledge retrieval capabilities.
|
| 17 |
+
|
| 18 |
+
## ✨ Key Features
|
| 19 |
+
|
| 20 |
+
### 📄 **Document RAG (Retrieval-Augmented Generation)**
|
| 21 |
+
- Upload medical documents (PDF/TXT) and get answers based on your uploaded content
|
| 22 |
+
- Hierarchical document indexing with auto-merging retrieval
|
| 23 |
+
- Mitigates hallucination by grounding responses in your documents
|
| 24 |
+
- Toggle RAG on/off - when disabled, provides concise clinical answers without document context
|
| 25 |
+
|
| 26 |
+
### 🌐 **Web Search Integration (MCP Protocol)**
|
| 27 |
+
- Fetch knowledge from reliable online medical resources
|
| 28 |
+
- Automatic summarization of web search results using Llama-8B
|
| 29 |
+
- Enriches context for medical specialist models
|
| 30 |
+
- Combines document RAG + web sources for comprehensive answers
|
| 31 |
+
|
| 32 |
+
### 🧠 **MedSwin Medical Specialist Models**
|
| 33 |
+
- **MedSwin SFT** (default) - Supervised Fine-Tuned model
|
| 34 |
+
- **MedSwin KD** - Knowledge Distillation model
|
| 35 |
+
- **MedSwin TA** - Task-Aware merged model
|
| 36 |
+
- Models download on-demand for efficient resource usage
|
| 37 |
+
- Fine-tuned on MedAlpaca-7B for medical domain expertise
|
| 38 |
+
|
| 39 |
+
### 🌍 **Multi-Language Support**
|
| 40 |
+
- Automatic language detection
|
| 41 |
+
- Non-English queries automatically translated to English
|
| 42 |
+
- Medical model processes in English
|
| 43 |
+
- Responses translated back to original language
|
| 44 |
+
- Powered by Llama-3.1-8B-Instruct for translation
|
| 45 |
+
|
| 46 |
+
### ⚙️ **Advanced Configuration**
|
| 47 |
+
- Customizable generation parameters (temperature, top-p, top-k)
|
| 48 |
+
- Adjustable retrieval settings (top-k, merge threshold)
|
| 49 |
+
- Increased max tokens to prevent early stopping
|
| 50 |
+
- Custom EOS handling for medical models
|
| 51 |
+
- Dynamic system prompts based on RAG status
|
| 52 |
+
|
| 53 |
+
## 🚀 Usage
|
| 54 |
+
|
| 55 |
+
1. **Upload Documents**: Drag and drop PDF or text files containing medical information
|
| 56 |
+
2. **Configure Settings**:
|
| 57 |
+
- Enable/disable Document RAG
|
| 58 |
+
- Enable/disable Web Search (MCP)
|
| 59 |
+
- Select medical model (MedSwin SFT/KD/TA)
|
| 60 |
+
3. **Ask Questions**: Type your medical question in any language
|
| 61 |
+
4. **Get Answers**: Receive comprehensive answers based on:
|
| 62 |
+
- Your uploaded documents (if RAG enabled)
|
| 63 |
+
- Web sources (if web search enabled)
|
| 64 |
+
- Medical model's training knowledge
|
| 65 |
+
|
| 66 |
+
## 🔧 Technical Details
|
| 67 |
+
|
| 68 |
+
- **Medical Models**: MedSwin/MedSwin-7B-SFT, MedSwin-7B-KD, MedSwin-Merged-TA-SFT-0.7
|
| 69 |
+
- **Translation Model**: meta-llama/Meta-Llama-3.1-8B-Instruct
|
| 70 |
+
- **Embedding Model**: sentence-transformers/all-MiniLM-L6-v2
|
| 71 |
+
- **RAG Framework**: LlamaIndex with hierarchical node parsing
|
| 72 |
+
- **Web Search**: DuckDuckGo with content extraction and summarization
|
| 73 |
+
|
| 74 |
+
## 📋 Requirements
|
| 75 |
+
|
| 76 |
+
See `requirements.txt` for full dependency list. Key dependencies:
|
| 77 |
+
- transformers, torch
|
| 78 |
+
- llama-index
|
| 79 |
+
- langdetect
|
| 80 |
+
- duckduckgo-search
|
| 81 |
+
- gradio, spaces
|
| 82 |
+
|
| 83 |
+
## 🎯 Use Cases
|
| 84 |
+
|
| 85 |
+
- Medical document Q&A
|
| 86 |
+
- Clinical information retrieval
|
| 87 |
+
- Medical research assistance
|
| 88 |
+
- Multi-language medical consultations
|
| 89 |
+
- Evidence-based medical answers
|
| 90 |
+
|
| 91 |
+
---
|
| 92 |
+
|
| 93 |
+
**Note**: This system is designed to assist with medical information retrieval. Always consult qualified healthcare professionals for medical decisions.
|
| 94 |
+
|
| 95 |
> Introduction: A medical app for MCP-1st-Birthday hackathon, integrate MCP searcher and document RAG
|
app.py
CHANGED
|
@@ -31,24 +31,38 @@ from llama_index.core.storage.docstore import SimpleDocumentStore
|
|
| 31 |
from llama_index.llms.huggingface import HuggingFaceLLM
|
| 32 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 33 |
from tqdm import tqdm
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 36 |
logging.basicConfig(level=logging.INFO)
|
| 37 |
logger = logging.getLogger(__name__)
|
| 38 |
hf_logging.set_verbosity_error()
|
| 39 |
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
| 42 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 43 |
if not HF_TOKEN:
|
| 44 |
raise ValueError("HF_TOKEN not found in environment variables")
|
| 45 |
|
| 46 |
# Custom UI
|
| 47 |
-
TITLE = "<h1><center
|
| 48 |
DESCRIPTION = """
|
| 49 |
<center>
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
<p>Upload PDF or text files to get started!</p>
|
| 51 |
-
<p>After asking question wait for RAG system to get relevant nodes and pass to LLM</p>
|
| 52 |
</center>
|
| 53 |
"""
|
| 54 |
CSS = """
|
|
@@ -107,6 +121,22 @@ CSS = """
|
|
| 107 |
display: flex;
|
| 108 |
align-items: center;
|
| 109 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
@media (min-width: 768px) {
|
| 111 |
.main-container {
|
| 112 |
display: flex;
|
|
@@ -124,34 +154,195 @@ CSS = """
|
|
| 124 |
}
|
| 125 |
"""
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
| 129 |
global_file_info = {}
|
| 130 |
|
| 131 |
-
def
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
|
|
|
| 138 |
device_map="auto",
|
| 139 |
trust_remote_code=True,
|
| 140 |
token=HF_TOKEN,
|
| 141 |
torch_dtype=torch.float16
|
| 142 |
)
|
| 143 |
-
logger.info("
|
| 144 |
|
| 145 |
-
def
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
return HuggingFaceLLM(
|
| 151 |
context_window=4096,
|
| 152 |
max_new_tokens=max_new_tokens,
|
| 153 |
-
tokenizer=
|
| 154 |
-
model=
|
| 155 |
generate_kwargs={
|
| 156 |
"do_sample": True,
|
| 157 |
"temperature": temperature,
|
|
@@ -174,7 +365,7 @@ def extract_text_from_document(file):
|
|
| 174 |
else:
|
| 175 |
return None, 0, ValueError(f"Unsupported file format: {file_extension}")
|
| 176 |
|
| 177 |
-
@spaces.GPU()
|
| 178 |
def create_or_update_index(files, request: gr.Request):
|
| 179 |
global global_file_info
|
| 180 |
|
|
@@ -185,7 +376,7 @@ def create_or_update_index(files, request: gr.Request):
|
|
| 185 |
user_id = request.session_hash
|
| 186 |
save_dir = f"./{user_id}_index"
|
| 187 |
# Initialize LlamaIndex modules
|
| 188 |
-
llm =
|
| 189 |
embed_model = HuggingFaceEmbedding(model_name=EMBEDDING_MODEL, token=HF_TOKEN)
|
| 190 |
Settings.llm = llm
|
| 191 |
Settings.embed_model = embed_model
|
|
@@ -234,13 +425,6 @@ def create_or_update_index(files, request: gr.Request):
|
|
| 234 |
new_leaf_nodes = get_leaf_nodes(new_nodes)
|
| 235 |
new_root_nodes = get_root_nodes(new_nodes)
|
| 236 |
logger.info(f"Generated {len(new_nodes)} total nodes ({len(new_root_nodes)} root, {len(new_leaf_nodes)} leaf)")
|
| 237 |
-
node_ancestry = {}
|
| 238 |
-
for node in new_nodes:
|
| 239 |
-
if hasattr(node, 'metadata') and 'file_name' in node.metadata:
|
| 240 |
-
file_origin = node.metadata['file_name']
|
| 241 |
-
if file_origin not in node_ancestry:
|
| 242 |
-
node_ancestry[file_origin] = 0
|
| 243 |
-
node_ancestry[file_origin] += 1
|
| 244 |
|
| 245 |
if os.path.exists(save_dir):
|
| 246 |
logger.info(f"Loading existing index from {save_dir}")
|
|
@@ -288,7 +472,7 @@ def create_or_update_index(files, request: gr.Request):
|
|
| 288 |
output_container += "</div>"
|
| 289 |
return f"Successfully indexed {len(files)} files.", output_container
|
| 290 |
|
| 291 |
-
@spaces.GPU()
|
| 292 |
def stream_chat(
|
| 293 |
message: str,
|
| 294 |
history: list,
|
|
@@ -300,75 +484,125 @@ def stream_chat(
|
|
| 300 |
penalty: float,
|
| 301 |
retriever_k: int,
|
| 302 |
merge_threshold: float,
|
|
|
|
|
|
|
|
|
|
| 303 |
request: gr.Request
|
| 304 |
):
|
| 305 |
if not request:
|
| 306 |
yield history + [{"role": "assistant", "content": "Session initialization failed. Please refresh the page."}]
|
| 307 |
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
user_id = request.session_hash
|
| 309 |
index_dir = f"./{user_id}_index"
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
index = load_index_from_storage(storage_context, settings=Settings)
|
| 327 |
-
base_retriever = index.as_retriever(similarity_top_k=retriever_k)
|
| 328 |
-
auto_merging_retriever = AutoMergingRetriever(
|
| 329 |
-
base_retriever,
|
| 330 |
-
storage_context=storage_context,
|
| 331 |
-
simple_ratio_thresh=merge_threshold,
|
| 332 |
-
verbose=True
|
| 333 |
-
)
|
| 334 |
-
logger.info(f"Query: {message}")
|
| 335 |
-
retrieval_start = time.time()
|
| 336 |
-
base_nodes = base_retriever.retrieve(message)
|
| 337 |
-
logger.info(f"Retrieved {len(base_nodes)} base nodes in {time.time() - retrieval_start:.2f}s")
|
| 338 |
-
base_file_sources = {}
|
| 339 |
-
for node in base_nodes:
|
| 340 |
-
if hasattr(node.node, 'metadata') and 'file_name' in node.node.metadata:
|
| 341 |
-
file_name = node.node.metadata['file_name']
|
| 342 |
-
if file_name not in base_file_sources:
|
| 343 |
-
base_file_sources[file_name] = 0
|
| 344 |
-
base_file_sources[file_name] += 1
|
| 345 |
-
logger.info(f"Base retrieval file distribution: {base_file_sources}")
|
| 346 |
-
merging_start = time.time()
|
| 347 |
-
merged_nodes = auto_merging_retriever.retrieve(message)
|
| 348 |
-
logger.info(f"Retrieved {len(merged_nodes)} merged nodes in {time.time() - merging_start:.2f}s")
|
| 349 |
-
merged_file_sources = {}
|
| 350 |
-
for node in merged_nodes:
|
| 351 |
-
if hasattr(node.node, 'metadata') and 'file_name' in node.node.metadata:
|
| 352 |
-
file_name = node.node.metadata['file_name']
|
| 353 |
-
if file_name not in merged_file_sources:
|
| 354 |
-
merged_file_sources[file_name] = 0
|
| 355 |
-
merged_file_sources[file_name] += 1
|
| 356 |
-
logger.info(f"Merged retrieval file distribution: {merged_file_sources}")
|
| 357 |
-
context = "\n\n".join([n.node.text for n in merged_nodes])
|
| 358 |
source_info = ""
|
| 359 |
-
if
|
| 360 |
-
|
| 361 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 362 |
messages = [{"role": "system", "content": formatted_system_prompt}]
|
| 363 |
for entry in history:
|
| 364 |
messages.append(entry)
|
| 365 |
messages.append({"role": "user", "content": message})
|
| 366 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 367 |
messages,
|
| 368 |
tokenize=False,
|
| 369 |
add_generation_prompt=True
|
| 370 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
stop_event = threading.Event()
|
|
|
|
| 372 |
class StopOnEvent(StoppingCriteria):
|
| 373 |
def __init__(self, stop_event):
|
| 374 |
super().__init__()
|
|
@@ -376,13 +610,42 @@ def stream_chat(
|
|
| 376 |
|
| 377 |
def __call__(self, input_ids, scores, **kwargs):
|
| 378 |
return self.stop_event.is_set()
|
| 379 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 380 |
streamer = TextIteratorStreamer(
|
| 381 |
-
|
| 382 |
skip_prompt=True,
|
| 383 |
skip_special_tokens=True
|
| 384 |
)
|
| 385 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
generation_kwargs = dict(
|
| 387 |
inputs,
|
| 388 |
streamer=streamer,
|
|
@@ -392,23 +655,36 @@ def stream_chat(
|
|
| 392 |
top_k=top_k,
|
| 393 |
repetition_penalty=penalty,
|
| 394 |
do_sample=True,
|
| 395 |
-
stopping_criteria=stopping_criteria
|
|
|
|
|
|
|
| 396 |
)
|
| 397 |
-
|
|
|
|
| 398 |
thread.start()
|
|
|
|
| 399 |
updated_history = history + [
|
| 400 |
-
{"role": "user", "content":
|
| 401 |
{"role": "assistant", "content": ""}
|
| 402 |
]
|
| 403 |
yield updated_history
|
|
|
|
| 404 |
partial_response = ""
|
| 405 |
try:
|
| 406 |
for new_text in streamer:
|
| 407 |
partial_response += new_text
|
| 408 |
updated_history[-1]["content"] = partial_response
|
| 409 |
yield updated_history
|
| 410 |
-
|
| 411 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 412 |
except GeneratorExit:
|
| 413 |
stop_event.set()
|
| 414 |
thread.join()
|
|
@@ -446,13 +722,13 @@ def create_demo():
|
|
| 446 |
with gr.Column(elem_classes="chatbot-container"):
|
| 447 |
chatbot = gr.Chatbot(
|
| 448 |
height=500,
|
| 449 |
-
placeholder="Chat with your documents here... Type your question below.",
|
| 450 |
show_label=False,
|
| 451 |
type="messages"
|
| 452 |
)
|
| 453 |
with gr.Row(elem_classes="input-row"):
|
| 454 |
message_input = gr.Textbox(
|
| 455 |
-
placeholder="Type your question here...",
|
| 456 |
show_label=False,
|
| 457 |
container=False,
|
| 458 |
lines=1,
|
|
@@ -460,9 +736,28 @@ def create_demo():
|
|
| 460 |
)
|
| 461 |
submit_button = gr.Button("➤", elem_classes="submit-btn", scale=1)
|
| 462 |
|
| 463 |
-
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 464 |
system_prompt = gr.Textbox(
|
| 465 |
-
value="As a
|
| 466 |
label="System Prompt",
|
| 467 |
lines=3
|
| 468 |
)
|
|
@@ -472,15 +767,16 @@ def create_demo():
|
|
| 472 |
minimum=0,
|
| 473 |
maximum=1,
|
| 474 |
step=0.1,
|
| 475 |
-
value=0.
|
| 476 |
label="Temperature"
|
| 477 |
)
|
| 478 |
max_new_tokens = gr.Slider(
|
| 479 |
-
minimum=
|
| 480 |
-
maximum=
|
| 481 |
-
step=
|
| 482 |
-
value=
|
| 483 |
label="Max New Tokens",
|
|
|
|
| 484 |
)
|
| 485 |
top_p = gr.Slider(
|
| 486 |
minimum=0.0,
|
|
@@ -532,7 +828,10 @@ def create_demo():
|
|
| 532 |
top_k,
|
| 533 |
penalty,
|
| 534 |
retriever_k,
|
| 535 |
-
merge_threshold
|
|
|
|
|
|
|
|
|
|
| 536 |
],
|
| 537 |
outputs=chatbot
|
| 538 |
)
|
|
@@ -549,7 +848,10 @@ def create_demo():
|
|
| 549 |
top_k,
|
| 550 |
penalty,
|
| 551 |
retriever_k,
|
| 552 |
-
merge_threshold
|
|
|
|
|
|
|
|
|
|
| 553 |
],
|
| 554 |
outputs=chatbot
|
| 555 |
)
|
|
@@ -557,6 +859,8 @@ def create_demo():
|
|
| 557 |
return demo
|
| 558 |
|
| 559 |
if __name__ == "__main__":
|
| 560 |
-
|
|
|
|
|
|
|
| 561 |
demo = create_demo()
|
| 562 |
-
demo.launch()
|
|
|
|
| 31 |
from llama_index.llms.huggingface import HuggingFaceLLM
|
| 32 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 33 |
from tqdm import tqdm
|
| 34 |
+
from langdetect import detect, LangDetectException
|
| 35 |
+
from duckduckgo_search import DDGS
|
| 36 |
+
import requests
|
| 37 |
+
from bs4 import BeautifulSoup
|
| 38 |
|
| 39 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 40 |
logging.basicConfig(level=logging.INFO)
|
| 41 |
logger = logging.getLogger(__name__)
|
| 42 |
hf_logging.set_verbosity_error()
|
| 43 |
|
| 44 |
+
# Model configurations
|
| 45 |
+
TRANSLATION_MODEL = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
| 46 |
+
MEDSWIN_MODELS = {
|
| 47 |
+
"MedSwin SFT": "MedSwin/MedSwin-7B-SFT",
|
| 48 |
+
"MedSwin KD": "MedSwin/MedSwin-7B-KD",
|
| 49 |
+
"MedSwin TA": "MedSwin/MedSwin-Merged-TA-SFT-0.7"
|
| 50 |
+
}
|
| 51 |
+
DEFAULT_MEDICAL_MODEL = "MedSwin SFT"
|
| 52 |
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
| 53 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 54 |
if not HF_TOKEN:
|
| 55 |
raise ValueError("HF_TOKEN not found in environment variables")
|
| 56 |
|
| 57 |
# Custom UI
|
| 58 |
+
TITLE = "<h1><center>🩺 MedLLM Agent - Medical RAG & Web Search System</center></h1>"
|
| 59 |
DESCRIPTION = """
|
| 60 |
<center>
|
| 61 |
+
<p><strong>Advanced Medical AI Assistant</strong> powered by MedSwin models</p>
|
| 62 |
+
<p>📄 <strong>Document RAG:</strong> Answer based on uploaded medical documents</p>
|
| 63 |
+
<p>🌐 <strong>Web Search:</strong> Fetch knowledge from reliable online medical resources</p>
|
| 64 |
+
<p>🌍 <strong>Multi-language:</strong> Automatic translation for non-English queries</p>
|
| 65 |
<p>Upload PDF or text files to get started!</p>
|
|
|
|
| 66 |
</center>
|
| 67 |
"""
|
| 68 |
CSS = """
|
|
|
|
| 121 |
display: flex;
|
| 122 |
align-items: center;
|
| 123 |
}
|
| 124 |
+
.feature-badge {
|
| 125 |
+
display: inline-block;
|
| 126 |
+
padding: 3px 8px;
|
| 127 |
+
margin: 2px;
|
| 128 |
+
border-radius: 12px;
|
| 129 |
+
font-size: 11px;
|
| 130 |
+
font-weight: bold;
|
| 131 |
+
}
|
| 132 |
+
.badge-rag {
|
| 133 |
+
background: #e3f2fd;
|
| 134 |
+
color: #1976d2;
|
| 135 |
+
}
|
| 136 |
+
.badge-web {
|
| 137 |
+
background: #f3e5f5;
|
| 138 |
+
color: #7b1fa2;
|
| 139 |
+
}
|
| 140 |
@media (min-width: 768px) {
|
| 141 |
.main-container {
|
| 142 |
display: flex;
|
|
|
|
| 154 |
}
|
| 155 |
"""
|
| 156 |
|
| 157 |
+
# Global model storage
|
| 158 |
+
global_translation_model = None
|
| 159 |
+
global_translation_tokenizer = None
|
| 160 |
+
global_medical_models = {}
|
| 161 |
+
global_medical_tokenizers = {}
|
| 162 |
global_file_info = {}
|
| 163 |
|
| 164 |
+
def initialize_translation_model():
|
| 165 |
+
"""Initialize Llama model for translation purposes"""
|
| 166 |
+
global global_translation_model, global_translation_tokenizer
|
| 167 |
+
if global_translation_model is None or global_translation_tokenizer is None:
|
| 168 |
+
logger.info("Initializing translation model (Llama-8B)...")
|
| 169 |
+
global_translation_tokenizer = AutoTokenizer.from_pretrained(TRANSLATION_MODEL, token=HF_TOKEN)
|
| 170 |
+
global_translation_model = AutoModelForCausalLM.from_pretrained(
|
| 171 |
+
TRANSLATION_MODEL,
|
| 172 |
device_map="auto",
|
| 173 |
trust_remote_code=True,
|
| 174 |
token=HF_TOKEN,
|
| 175 |
torch_dtype=torch.float16
|
| 176 |
)
|
| 177 |
+
logger.info("Translation model initialized successfully")
|
| 178 |
|
| 179 |
+
def initialize_medical_model(model_name: str):
|
| 180 |
+
"""Initialize medical model (MedSwin) - download on demand"""
|
| 181 |
+
global global_medical_models, global_medical_tokenizers
|
| 182 |
+
if model_name not in global_medical_models or global_medical_models[model_name] is None:
|
| 183 |
+
logger.info(f"Initializing medical model: {model_name}...")
|
| 184 |
+
model_path = MEDSWIN_MODELS[model_name]
|
| 185 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, token=HF_TOKEN)
|
| 186 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 187 |
+
model_path,
|
| 188 |
+
device_map="auto",
|
| 189 |
+
trust_remote_code=True,
|
| 190 |
+
token=HF_TOKEN,
|
| 191 |
+
torch_dtype=torch.float16
|
| 192 |
+
)
|
| 193 |
+
global_medical_models[model_name] = model
|
| 194 |
+
global_medical_tokenizers[model_name] = tokenizer
|
| 195 |
+
logger.info(f"Medical model {model_name} initialized successfully")
|
| 196 |
+
return global_medical_models[model_name], global_medical_tokenizers[model_name]
|
| 197 |
+
|
| 198 |
+
def detect_language(text: str) -> str:
|
| 199 |
+
"""Detect language of input text"""
|
| 200 |
+
try:
|
| 201 |
+
lang = detect(text)
|
| 202 |
+
return lang
|
| 203 |
+
except LangDetectException:
|
| 204 |
+
return "en" # Default to English if detection fails
|
| 205 |
+
|
| 206 |
+
def translate_text(text: str, target_lang: str = "en", source_lang: str = None) -> str:
|
| 207 |
+
"""Translate text using Llama model"""
|
| 208 |
+
global global_translation_model, global_translation_tokenizer
|
| 209 |
+
if global_translation_model is None or global_translation_tokenizer is None:
|
| 210 |
+
initialize_translation_model()
|
| 211 |
+
|
| 212 |
+
if source_lang:
|
| 213 |
+
prompt = f"Translate the following {source_lang} text to {target_lang}. Only provide the translation, no explanations:\n\n{text}"
|
| 214 |
+
else:
|
| 215 |
+
prompt = f"Translate the following text to {target_lang}. Only provide the translation, no explanations:\n\n{text}"
|
| 216 |
+
|
| 217 |
+
messages = [
|
| 218 |
+
{"role": "system", "content": "You are a professional translator. Translate accurately and concisely."},
|
| 219 |
+
{"role": "user", "content": prompt}
|
| 220 |
+
]
|
| 221 |
+
|
| 222 |
+
prompt_text = global_translation_tokenizer.apply_chat_template(
|
| 223 |
+
messages,
|
| 224 |
+
tokenize=False,
|
| 225 |
+
add_generation_prompt=True
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
inputs = global_translation_tokenizer(prompt_text, return_tensors="pt").to(global_translation_model.device)
|
| 229 |
+
|
| 230 |
+
with torch.no_grad():
|
| 231 |
+
outputs = global_translation_model.generate(
|
| 232 |
+
**inputs,
|
| 233 |
+
max_new_tokens=512,
|
| 234 |
+
temperature=0.3,
|
| 235 |
+
do_sample=True,
|
| 236 |
+
pad_token_id=global_translation_tokenizer.eos_token_id
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
response = global_translation_tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
| 240 |
+
return response.strip()
|
| 241 |
+
|
| 242 |
+
def search_web(query: str, max_results: int = 5) -> list:
|
| 243 |
+
"""Search web using DuckDuckGo and extract content"""
|
| 244 |
+
try:
|
| 245 |
+
with DDGS() as ddgs:
|
| 246 |
+
results = list(ddgs.text(query, max_results=max_results))
|
| 247 |
+
web_content = []
|
| 248 |
+
for result in results:
|
| 249 |
+
try:
|
| 250 |
+
url = result.get('href', '')
|
| 251 |
+
title = result.get('title', '')
|
| 252 |
+
snippet = result.get('body', '')
|
| 253 |
+
|
| 254 |
+
# Try to fetch full content
|
| 255 |
+
try:
|
| 256 |
+
response = requests.get(url, timeout=5, headers={'User-Agent': 'Mozilla/5.0'})
|
| 257 |
+
if response.status_code == 200:
|
| 258 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
| 259 |
+
# Extract main content
|
| 260 |
+
for script in soup(["script", "style"]):
|
| 261 |
+
script.decompose()
|
| 262 |
+
text = soup.get_text()
|
| 263 |
+
# Clean and limit text
|
| 264 |
+
lines = (line.strip() for line in text.splitlines())
|
| 265 |
+
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
| 266 |
+
text = ' '.join(chunk for chunk in chunks if chunk)
|
| 267 |
+
if len(text) > 1000:
|
| 268 |
+
text = text[:1000] + "..."
|
| 269 |
+
web_content.append({
|
| 270 |
+
'title': title,
|
| 271 |
+
'url': url,
|
| 272 |
+
'content': snippet + "\n" + text[:500] if text else snippet
|
| 273 |
+
})
|
| 274 |
+
else:
|
| 275 |
+
web_content.append({
|
| 276 |
+
'title': title,
|
| 277 |
+
'url': url,
|
| 278 |
+
'content': snippet
|
| 279 |
+
})
|
| 280 |
+
except:
|
| 281 |
+
web_content.append({
|
| 282 |
+
'title': title,
|
| 283 |
+
'url': url,
|
| 284 |
+
'content': snippet
|
| 285 |
+
})
|
| 286 |
+
except Exception as e:
|
| 287 |
+
logger.error(f"Error processing search result: {e}")
|
| 288 |
+
continue
|
| 289 |
+
return web_content
|
| 290 |
+
except Exception as e:
|
| 291 |
+
logger.error(f"Web search error: {e}")
|
| 292 |
+
return []
|
| 293 |
+
|
| 294 |
+
def summarize_web_content(content_list: list, query: str) -> str:
|
| 295 |
+
"""Summarize web search results using Llama model"""
|
| 296 |
+
global global_translation_model, global_translation_tokenizer
|
| 297 |
+
if global_translation_model is None or global_translation_tokenizer is None:
|
| 298 |
+
initialize_translation_model()
|
| 299 |
+
|
| 300 |
+
combined_content = "\n\n".join([f"Source: {item['title']}\n{item['content']}" for item in content_list[:3]])
|
| 301 |
+
|
| 302 |
+
prompt = f"""Summarize the following web search results related to the query: "{query}"
|
| 303 |
+
|
| 304 |
+
Extract key medical information, facts, and insights. Be concise and focus on reliable information.
|
| 305 |
+
|
| 306 |
+
Search Results:
|
| 307 |
+
{combined_content}
|
| 308 |
+
|
| 309 |
+
Summary:"""
|
| 310 |
+
|
| 311 |
+
messages = [
|
| 312 |
+
{"role": "system", "content": "You are a medical information summarizer. Extract and summarize key medical facts accurately."},
|
| 313 |
+
{"role": "user", "content": prompt}
|
| 314 |
+
]
|
| 315 |
+
|
| 316 |
+
prompt_text = global_translation_tokenizer.apply_chat_template(
|
| 317 |
+
messages,
|
| 318 |
+
tokenize=False,
|
| 319 |
+
add_generation_prompt=True
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
inputs = global_translation_tokenizer(prompt_text, return_tensors="pt").to(global_translation_model.device)
|
| 323 |
+
|
| 324 |
+
with torch.no_grad():
|
| 325 |
+
outputs = global_translation_model.generate(
|
| 326 |
+
**inputs,
|
| 327 |
+
max_new_tokens=512,
|
| 328 |
+
temperature=0.5,
|
| 329 |
+
do_sample=True,
|
| 330 |
+
pad_token_id=global_translation_tokenizer.eos_token_id
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
summary = global_translation_tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
| 334 |
+
return summary.strip()
|
| 335 |
+
|
| 336 |
+
def get_llm_for_rag(temperature=0.7, max_new_tokens=256, top_p=0.95, top_k=50):
|
| 337 |
+
"""Get LLM for RAG indexing (uses translation model)"""
|
| 338 |
+
if global_translation_model is None or global_translation_tokenizer is None:
|
| 339 |
+
initialize_translation_model()
|
| 340 |
|
| 341 |
return HuggingFaceLLM(
|
| 342 |
context_window=4096,
|
| 343 |
max_new_tokens=max_new_tokens,
|
| 344 |
+
tokenizer=global_translation_tokenizer,
|
| 345 |
+
model=global_translation_model,
|
| 346 |
generate_kwargs={
|
| 347 |
"do_sample": True,
|
| 348 |
"temperature": temperature,
|
|
|
|
| 365 |
else:
|
| 366 |
return None, 0, ValueError(f"Unsupported file format: {file_extension}")
|
| 367 |
|
| 368 |
+
@spaces.GPU(max_duration=120)
|
| 369 |
def create_or_update_index(files, request: gr.Request):
|
| 370 |
global global_file_info
|
| 371 |
|
|
|
|
| 376 |
user_id = request.session_hash
|
| 377 |
save_dir = f"./{user_id}_index"
|
| 378 |
# Initialize LlamaIndex modules
|
| 379 |
+
llm = get_llm_for_rag()
|
| 380 |
embed_model = HuggingFaceEmbedding(model_name=EMBEDDING_MODEL, token=HF_TOKEN)
|
| 381 |
Settings.llm = llm
|
| 382 |
Settings.embed_model = embed_model
|
|
|
|
| 425 |
new_leaf_nodes = get_leaf_nodes(new_nodes)
|
| 426 |
new_root_nodes = get_root_nodes(new_nodes)
|
| 427 |
logger.info(f"Generated {len(new_nodes)} total nodes ({len(new_root_nodes)} root, {len(new_leaf_nodes)} leaf)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 428 |
|
| 429 |
if os.path.exists(save_dir):
|
| 430 |
logger.info(f"Loading existing index from {save_dir}")
|
|
|
|
| 472 |
output_container += "</div>"
|
| 473 |
return f"Successfully indexed {len(files)} files.", output_container
|
| 474 |
|
| 475 |
+
@spaces.GPU(max_duration=120)
|
| 476 |
def stream_chat(
|
| 477 |
message: str,
|
| 478 |
history: list,
|
|
|
|
| 484 |
penalty: float,
|
| 485 |
retriever_k: int,
|
| 486 |
merge_threshold: float,
|
| 487 |
+
use_rag: bool,
|
| 488 |
+
medical_model: str,
|
| 489 |
+
use_web_search: bool,
|
| 490 |
request: gr.Request
|
| 491 |
):
|
| 492 |
if not request:
|
| 493 |
yield history + [{"role": "assistant", "content": "Session initialization failed. Please refresh the page."}]
|
| 494 |
return
|
| 495 |
+
|
| 496 |
+
# Detect language and translate if needed
|
| 497 |
+
original_lang = detect_language(message)
|
| 498 |
+
original_message = message
|
| 499 |
+
needs_translation = original_lang != "en"
|
| 500 |
+
|
| 501 |
+
if needs_translation:
|
| 502 |
+
logger.info(f"Detected non-English language: {original_lang}, translating to English...")
|
| 503 |
+
message = translate_text(message, target_lang="en", source_lang=original_lang)
|
| 504 |
+
logger.info(f"Translated query: {message}")
|
| 505 |
+
|
| 506 |
user_id = request.session_hash
|
| 507 |
index_dir = f"./{user_id}_index"
|
| 508 |
+
|
| 509 |
+
# Initialize medical model
|
| 510 |
+
medical_model_obj, medical_tokenizer = initialize_medical_model(medical_model)
|
| 511 |
+
|
| 512 |
+
# Adjust system prompt based on RAG setting
|
| 513 |
+
if use_rag:
|
| 514 |
+
if not os.path.exists(index_dir):
|
| 515 |
+
yield history + [{"role": "assistant", "content": "Please upload documents first to use RAG."}]
|
| 516 |
+
return
|
| 517 |
+
|
| 518 |
+
base_system_prompt = system_prompt if system_prompt else "As a medical specialist, provide detailed and accurate answers based on the provided medical documents."
|
| 519 |
+
else:
|
| 520 |
+
base_system_prompt = "As a medical specialist, provide short and concise clinical answers. Be brief and avoid lengthy explanations. Focus on key medical facts only."
|
| 521 |
+
|
| 522 |
+
# Get RAG context if enabled
|
| 523 |
+
rag_context = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 524 |
source_info = ""
|
| 525 |
+
if use_rag and os.path.exists(index_dir):
|
| 526 |
+
embed_model = HuggingFaceEmbedding(model_name=EMBEDDING_MODEL, token=HF_TOKEN)
|
| 527 |
+
Settings.embed_model = embed_model
|
| 528 |
+
storage_context = StorageContext.from_defaults(persist_dir=index_dir)
|
| 529 |
+
index = load_index_from_storage(storage_context, settings=Settings)
|
| 530 |
+
base_retriever = index.as_retriever(similarity_top_k=retriever_k)
|
| 531 |
+
auto_merging_retriever = AutoMergingRetriever(
|
| 532 |
+
base_retriever,
|
| 533 |
+
storage_context=storage_context,
|
| 534 |
+
simple_ratio_thresh=merge_threshold,
|
| 535 |
+
verbose=True
|
| 536 |
+
)
|
| 537 |
+
logger.info(f"Query: {message}")
|
| 538 |
+
retrieval_start = time.time()
|
| 539 |
+
merged_nodes = auto_merging_retriever.retrieve(message)
|
| 540 |
+
logger.info(f"Retrieved {len(merged_nodes)} merged nodes in {time.time() - retrieval_start:.2f}s")
|
| 541 |
+
merged_file_sources = {}
|
| 542 |
+
for node in merged_nodes:
|
| 543 |
+
if hasattr(node.node, 'metadata') and 'file_name' in node.node.metadata:
|
| 544 |
+
file_name = node.node.metadata['file_name']
|
| 545 |
+
if file_name not in merged_file_sources:
|
| 546 |
+
merged_file_sources[file_name] = 0
|
| 547 |
+
merged_file_sources[file_name] += 1
|
| 548 |
+
logger.info(f"Merged retrieval file distribution: {merged_file_sources}")
|
| 549 |
+
rag_context = "\n\n".join([n.node.text for n in merged_nodes])
|
| 550 |
+
if merged_file_sources:
|
| 551 |
+
source_info = "\n\nRetrieved information from files: " + ", ".join(merged_file_sources.keys())
|
| 552 |
+
|
| 553 |
+
# Get web search context if enabled
|
| 554 |
+
web_context = ""
|
| 555 |
+
web_sources = []
|
| 556 |
+
if use_web_search:
|
| 557 |
+
logger.info("Performing web search...")
|
| 558 |
+
web_results = search_web(message, max_results=5)
|
| 559 |
+
if web_results:
|
| 560 |
+
web_summary = summarize_web_content(web_results, message)
|
| 561 |
+
web_context = f"\n\nAdditional Web Sources:\n{web_summary}"
|
| 562 |
+
web_sources = [r['title'] for r in web_results[:3]]
|
| 563 |
+
logger.info(f"Web search completed, found {len(web_results)} results")
|
| 564 |
+
|
| 565 |
+
# Build final context
|
| 566 |
+
context_parts = []
|
| 567 |
+
if rag_context:
|
| 568 |
+
context_parts.append(f"Document Context:\n{rag_context}")
|
| 569 |
+
if web_context:
|
| 570 |
+
context_parts.append(web_context)
|
| 571 |
+
|
| 572 |
+
full_context = "\n\n".join(context_parts) if context_parts else ""
|
| 573 |
+
|
| 574 |
+
# Build system prompt
|
| 575 |
+
if use_rag or use_web_search:
|
| 576 |
+
formatted_system_prompt = f"{base_system_prompt}\n\n{full_context}{source_info}"
|
| 577 |
+
else:
|
| 578 |
+
formatted_system_prompt = base_system_prompt
|
| 579 |
+
|
| 580 |
+
# Prepare messages
|
| 581 |
messages = [{"role": "system", "content": formatted_system_prompt}]
|
| 582 |
for entry in history:
|
| 583 |
messages.append(entry)
|
| 584 |
messages.append({"role": "user", "content": message})
|
| 585 |
+
|
| 586 |
+
# Get EOS token and adjust stopping criteria
|
| 587 |
+
eos_token_id = medical_tokenizer.eos_token_id
|
| 588 |
+
if eos_token_id is None:
|
| 589 |
+
eos_token_id = medical_tokenizer.pad_token_id
|
| 590 |
+
|
| 591 |
+
# Increase max tokens for medical models (prevent early stopping)
|
| 592 |
+
max_new_tokens = int(max_new_tokens) if isinstance(max_new_tokens, (int, float)) else 2048
|
| 593 |
+
max_new_tokens = max(max_new_tokens, 1024) # Minimum 1024 tokens for medical answers
|
| 594 |
+
|
| 595 |
+
prompt = medical_tokenizer.apply_chat_template(
|
| 596 |
messages,
|
| 597 |
tokenize=False,
|
| 598 |
add_generation_prompt=True
|
| 599 |
)
|
| 600 |
+
|
| 601 |
+
inputs = medical_tokenizer(prompt, return_tensors="pt").to(medical_model_obj.device)
|
| 602 |
+
prompt_length = inputs['input_ids'].shape[1]
|
| 603 |
+
|
| 604 |
stop_event = threading.Event()
|
| 605 |
+
|
| 606 |
class StopOnEvent(StoppingCriteria):
|
| 607 |
def __init__(self, stop_event):
|
| 608 |
super().__init__()
|
|
|
|
| 610 |
|
| 611 |
def __call__(self, input_ids, scores, **kwargs):
|
| 612 |
return self.stop_event.is_set()
|
| 613 |
+
|
| 614 |
+
# Custom stopping criteria that doesn't stop on EOS too early
|
| 615 |
+
class MedicalStoppingCriteria(StoppingCriteria):
|
| 616 |
+
def __init__(self, eos_token_id, prompt_length, min_new_tokens=100):
|
| 617 |
+
super().__init__()
|
| 618 |
+
self.eos_token_id = eos_token_id
|
| 619 |
+
self.prompt_length = prompt_length
|
| 620 |
+
self.min_new_tokens = min_new_tokens
|
| 621 |
+
|
| 622 |
+
def __call__(self, input_ids, scores, **kwargs):
|
| 623 |
+
current_length = input_ids.shape[1]
|
| 624 |
+
new_tokens = current_length - self.prompt_length
|
| 625 |
+
last_token = input_ids[0, -1].item()
|
| 626 |
+
|
| 627 |
+
# Don't stop on EOS if we haven't generated enough new tokens
|
| 628 |
+
if new_tokens < self.min_new_tokens:
|
| 629 |
+
return False
|
| 630 |
+
# Allow EOS after minimum new tokens have been generated
|
| 631 |
+
return last_token == self.eos_token_id
|
| 632 |
+
|
| 633 |
+
stopping_criteria = StoppingCriteriaList([
|
| 634 |
+
StopOnEvent(stop_event),
|
| 635 |
+
MedicalStoppingCriteria(eos_token_id, prompt_length, min_new_tokens=100)
|
| 636 |
+
])
|
| 637 |
+
|
| 638 |
streamer = TextIteratorStreamer(
|
| 639 |
+
medical_tokenizer,
|
| 640 |
skip_prompt=True,
|
| 641 |
skip_special_tokens=True
|
| 642 |
)
|
| 643 |
+
|
| 644 |
+
temperature = float(temperature) if isinstance(temperature, (int, float)) else 0.7
|
| 645 |
+
top_p = float(top_p) if isinstance(top_p, (int, float)) else 0.95
|
| 646 |
+
top_k = int(top_k) if isinstance(top_k, (int, float)) else 50
|
| 647 |
+
penalty = float(penalty) if isinstance(penalty, (int, float)) else 1.2
|
| 648 |
+
|
| 649 |
generation_kwargs = dict(
|
| 650 |
inputs,
|
| 651 |
streamer=streamer,
|
|
|
|
| 655 |
top_k=top_k,
|
| 656 |
repetition_penalty=penalty,
|
| 657 |
do_sample=True,
|
| 658 |
+
stopping_criteria=stopping_criteria,
|
| 659 |
+
eos_token_id=eos_token_id,
|
| 660 |
+
pad_token_id=medical_tokenizer.pad_token_id or eos_token_id
|
| 661 |
)
|
| 662 |
+
|
| 663 |
+
thread = threading.Thread(target=medical_model_obj.generate, kwargs=generation_kwargs)
|
| 664 |
thread.start()
|
| 665 |
+
|
| 666 |
updated_history = history + [
|
| 667 |
+
{"role": "user", "content": original_message},
|
| 668 |
{"role": "assistant", "content": ""}
|
| 669 |
]
|
| 670 |
yield updated_history
|
| 671 |
+
|
| 672 |
partial_response = ""
|
| 673 |
try:
|
| 674 |
for new_text in streamer:
|
| 675 |
partial_response += new_text
|
| 676 |
updated_history[-1]["content"] = partial_response
|
| 677 |
yield updated_history
|
| 678 |
+
|
| 679 |
+
# Translate back if needed
|
| 680 |
+
if needs_translation and partial_response:
|
| 681 |
+
logger.info(f"Translating response back to {original_lang}...")
|
| 682 |
+
translated_response = translate_text(partial_response, target_lang=original_lang, source_lang="en")
|
| 683 |
+
updated_history[-1]["content"] = translated_response
|
| 684 |
+
yield updated_history
|
| 685 |
+
else:
|
| 686 |
+
yield updated_history
|
| 687 |
+
|
| 688 |
except GeneratorExit:
|
| 689 |
stop_event.set()
|
| 690 |
thread.join()
|
|
|
|
| 722 |
with gr.Column(elem_classes="chatbot-container"):
|
| 723 |
chatbot = gr.Chatbot(
|
| 724 |
height=500,
|
| 725 |
+
placeholder="Chat with your medical documents here... Type your question below.",
|
| 726 |
show_label=False,
|
| 727 |
type="messages"
|
| 728 |
)
|
| 729 |
with gr.Row(elem_classes="input-row"):
|
| 730 |
message_input = gr.Textbox(
|
| 731 |
+
placeholder="Type your medical question here...",
|
| 732 |
show_label=False,
|
| 733 |
container=False,
|
| 734 |
lines=1,
|
|
|
|
| 736 |
)
|
| 737 |
submit_button = gr.Button("➤", elem_classes="submit-btn", scale=1)
|
| 738 |
|
| 739 |
+
with gr.Accordion("⚙️ Advanced Settings", open=False):
|
| 740 |
+
with gr.Row():
|
| 741 |
+
use_rag = gr.Checkbox(
|
| 742 |
+
value=True,
|
| 743 |
+
label="Enable Document RAG",
|
| 744 |
+
info="Answer based on uploaded documents"
|
| 745 |
+
)
|
| 746 |
+
use_web_search = gr.Checkbox(
|
| 747 |
+
value=False,
|
| 748 |
+
label="Enable Web Search (MCP)",
|
| 749 |
+
info="Fetch knowledge from online medical resources"
|
| 750 |
+
)
|
| 751 |
+
|
| 752 |
+
medical_model = gr.Radio(
|
| 753 |
+
choices=list(MEDSWIN_MODELS.keys()),
|
| 754 |
+
value=DEFAULT_MEDICAL_MODEL,
|
| 755 |
+
label="Medical Model",
|
| 756 |
+
info="MedSwin SFT (default), others download on first use"
|
| 757 |
+
)
|
| 758 |
+
|
| 759 |
system_prompt = gr.Textbox(
|
| 760 |
+
value="As a medical specialist, provide detailed and accurate answers based on the provided medical documents and context. Ensure all information is clinically accurate and cite sources when available.",
|
| 761 |
label="System Prompt",
|
| 762 |
lines=3
|
| 763 |
)
|
|
|
|
| 767 |
minimum=0,
|
| 768 |
maximum=1,
|
| 769 |
step=0.1,
|
| 770 |
+
value=0.7,
|
| 771 |
label="Temperature"
|
| 772 |
)
|
| 773 |
max_new_tokens = gr.Slider(
|
| 774 |
+
minimum=512,
|
| 775 |
+
maximum=4096,
|
| 776 |
+
step=128,
|
| 777 |
+
value=2048,
|
| 778 |
label="Max New Tokens",
|
| 779 |
+
info="Increased for medical models to prevent early stopping"
|
| 780 |
)
|
| 781 |
top_p = gr.Slider(
|
| 782 |
minimum=0.0,
|
|
|
|
| 828 |
top_k,
|
| 829 |
penalty,
|
| 830 |
retriever_k,
|
| 831 |
+
merge_threshold,
|
| 832 |
+
use_rag,
|
| 833 |
+
medical_model,
|
| 834 |
+
use_web_search
|
| 835 |
],
|
| 836 |
outputs=chatbot
|
| 837 |
)
|
|
|
|
| 848 |
top_k,
|
| 849 |
penalty,
|
| 850 |
retriever_k,
|
| 851 |
+
merge_threshold,
|
| 852 |
+
use_rag,
|
| 853 |
+
medical_model,
|
| 854 |
+
use_web_search
|
| 855 |
],
|
| 856 |
outputs=chatbot
|
| 857 |
)
|
|
|
|
| 859 |
return demo
|
| 860 |
|
| 861 |
if __name__ == "__main__":
|
| 862 |
+
# Initialize default medical model
|
| 863 |
+
logger.info("Initializing default medical model (MedSwin SFT)...")
|
| 864 |
+
initialize_medical_model(DEFAULT_MEDICAL_MODEL)
|
| 865 |
demo = create_demo()
|
| 866 |
+
demo.launch()
|