FAQ-Chatbot / model.py
AgamP's picture
Upload 4 files
b7034ea verified
from huggingface_hub import login
#loading base model
import torch
from transformers import AutoModelForCausalLM,AutoTokenizer,BitsAndBytesConfig
base_model_id = "mistralai/Mistral-7B-Instruct-v0.2"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
base_model = AutoModelForCausalLM.from_pretrained(
base_model_id, # Mistral, same as before
quantization_config=bnb_config, # Same quantization config as before
device_map="auto",
trust_remote_code=True,
)
eval_tokenizer = AutoTokenizer.from_pretrained(
base_model_id,
add_bos_token=True,
trust_remote_code=True,
)
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM
peft_model_id="AgamP/results"
config=PeftConfig.from_pretrained(peft_model_id)
model= PeftModel.from_pretrained(base_model,peft_model_id)
prompt="How do i track my fitness levels?"
model.eval()
with torch.no_grad():
def generate_response(prompt):
model_input = eval_tokenizer(prompt , return_tensors="pt").to("cuda")
response = (eval_tokenizer.decode(model.generate(**model_input, max_new_tokens=500)[0], skip_special_tokens=True))
#out = output.split(":")[-1]
return response