from huggingface_hub import login #loading base model import torch from transformers import AutoModelForCausalLM,AutoTokenizer,BitsAndBytesConfig base_model_id = "mistralai/Mistral-7B-Instruct-v0.2" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) base_model = AutoModelForCausalLM.from_pretrained( base_model_id, # Mistral, same as before quantization_config=bnb_config, # Same quantization config as before device_map="auto", trust_remote_code=True, ) eval_tokenizer = AutoTokenizer.from_pretrained( base_model_id, add_bos_token=True, trust_remote_code=True, ) from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM peft_model_id="AgamP/results" config=PeftConfig.from_pretrained(peft_model_id) model= PeftModel.from_pretrained(base_model,peft_model_id) prompt="How do i track my fitness levels?" model.eval() with torch.no_grad(): def generate_response(prompt): model_input = eval_tokenizer(prompt , return_tensors="pt").to("cuda") response = (eval_tokenizer.decode(model.generate(**model_input, max_new_tokens=500)[0], skip_special_tokens=True)) #out = output.split(":")[-1] return response