RegNet: Optimized for Mobile Deployment

Imagenet classifier and general purpose backbone

RegNet is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.

This model is an implementation of RegNet found here.

This repository provides scripts to run RegNet on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.image_classification
  • Model Stats:
    • Model checkpoint: Imagenet
    • Input resolution: 224x224
    • Number of parameters: 15.3M
    • Model size (float): 58.3 MB
    • Model size (w8a8): 15.4 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
RegNet float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 9.896 ms 0 - 181 MB NPU RegNet.tflite
RegNet float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 9.938 ms 1 - 162 MB NPU RegNet.dlc
RegNet float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 3.267 ms 0 - 232 MB NPU RegNet.tflite
RegNet float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 3.29 ms 1 - 209 MB NPU RegNet.dlc
RegNet float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 1.983 ms 0 - 2 MB NPU RegNet.tflite
RegNet float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 2.001 ms 1 - 3 MB NPU RegNet.dlc
RegNet float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 1.988 ms 0 - 42 MB NPU RegNet.onnx.zip
RegNet float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 13.853 ms 0 - 181 MB NPU RegNet.tflite
RegNet float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 3.311 ms 1 - 162 MB NPU RegNet.dlc
RegNet float SA7255P ADP Qualcomm® SA7255P TFLITE 9.896 ms 0 - 181 MB NPU RegNet.tflite
RegNet float SA7255P ADP Qualcomm® SA7255P QNN_DLC 9.938 ms 1 - 162 MB NPU RegNet.dlc
RegNet float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 1.991 ms 0 - 3 MB NPU RegNet.tflite
RegNet float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 1.997 ms 1 - 2 MB NPU RegNet.dlc
RegNet float SA8295P ADP Qualcomm® SA8295P TFLITE 3.452 ms 0 - 177 MB NPU RegNet.tflite
RegNet float SA8295P ADP Qualcomm® SA8295P QNN_DLC 3.444 ms 1 - 161 MB NPU RegNet.dlc
RegNet float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 1.985 ms 0 - 2 MB NPU RegNet.tflite
RegNet float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 2.012 ms 1 - 3 MB NPU RegNet.dlc
RegNet float SA8775P ADP Qualcomm® SA8775P TFLITE 13.853 ms 0 - 181 MB NPU RegNet.tflite
RegNet float SA8775P ADP Qualcomm® SA8775P QNN_DLC 3.311 ms 1 - 162 MB NPU RegNet.dlc
RegNet float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 1.368 ms 0 - 242 MB NPU RegNet.tflite
RegNet float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 1.386 ms 1 - 214 MB NPU RegNet.dlc
RegNet float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 1.432 ms 0 - 189 MB NPU RegNet.onnx.zip
RegNet float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 1.084 ms 0 - 184 MB NPU RegNet.tflite
RegNet float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 1.086 ms 1 - 169 MB NPU RegNet.dlc
RegNet float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 1.169 ms 0 - 138 MB NPU RegNet.onnx.zip
RegNet float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 0.89 ms 0 - 185 MB NPU RegNet.tflite
RegNet float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 0.9 ms 1 - 168 MB NPU RegNet.dlc
RegNet float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 1.013 ms 0 - 140 MB NPU RegNet.onnx.zip
RegNet float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 2.235 ms 1 - 1 MB NPU RegNet.dlc
RegNet float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 1.969 ms 39 - 39 MB NPU RegNet.onnx.zip
RegNet w8a8 Dragonwing Q-6690 MTP Qualcomm® Qcm6690 TFLITE 6.662 ms 0 - 169 MB NPU RegNet.tflite
RegNet w8a8 Dragonwing Q-6690 MTP Qualcomm® Qcm6690 QNN_DLC 7.165 ms 0 - 175 MB NPU RegNet.dlc
RegNet w8a8 Dragonwing Q-6690 MTP Qualcomm® Qcm6690 ONNX 17.928 ms 8 - 24 MB CPU RegNet.onnx.zip
RegNet w8a8 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 TFLITE 2.228 ms 0 - 21 MB NPU RegNet.tflite
RegNet w8a8 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 QNN_DLC 2.697 ms 0 - 2 MB NPU RegNet.dlc
RegNet w8a8 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 ONNX 28.317 ms 7 - 19 MB CPU RegNet.onnx.zip
RegNet w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 2.002 ms 0 - 167 MB NPU RegNet.tflite
RegNet w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 2.269 ms 0 - 168 MB NPU RegNet.dlc
RegNet w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 1.152 ms 0 - 208 MB NPU RegNet.tflite
RegNet w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 1.303 ms 0 - 204 MB NPU RegNet.dlc
RegNet w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 0.728 ms 0 - 2 MB NPU RegNet.tflite
RegNet w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 0.905 ms 0 - 2 MB NPU RegNet.dlc
RegNet w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 1.168 ms 0 - 26 MB NPU RegNet.onnx.zip
RegNet w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 1.065 ms 0 - 167 MB NPU RegNet.tflite
RegNet w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 1.267 ms 0 - 169 MB NPU RegNet.dlc
RegNet w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) TFLITE 18.249 ms 0 - 96 MB GPU RegNet.tflite
RegNet w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) ONNX 17.539 ms 5 - 15 MB CPU RegNet.onnx.zip
RegNet w8a8 SA7255P ADP Qualcomm® SA7255P TFLITE 2.002 ms 0 - 167 MB NPU RegNet.tflite
RegNet w8a8 SA7255P ADP Qualcomm® SA7255P QNN_DLC 2.269 ms 0 - 168 MB NPU RegNet.dlc
RegNet w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 0.733 ms 0 - 2 MB NPU RegNet.tflite
RegNet w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 0.892 ms 0 - 3 MB NPU RegNet.dlc
RegNet w8a8 SA8295P ADP Qualcomm® SA8295P TFLITE 1.418 ms 0 - 176 MB NPU RegNet.tflite
RegNet w8a8 SA8295P ADP Qualcomm® SA8295P QNN_DLC 1.604 ms 0 - 176 MB NPU RegNet.dlc
RegNet w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 0.732 ms 0 - 2 MB NPU RegNet.tflite
RegNet w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 0.891 ms 0 - 2 MB NPU RegNet.dlc
RegNet w8a8 SA8775P ADP Qualcomm® SA8775P TFLITE 1.065 ms 0 - 167 MB NPU RegNet.tflite
RegNet w8a8 SA8775P ADP Qualcomm® SA8775P QNN_DLC 1.267 ms 0 - 169 MB NPU RegNet.dlc
RegNet w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 0.53 ms 0 - 213 MB NPU RegNet.tflite
RegNet w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 0.66 ms 0 - 206 MB NPU RegNet.dlc
RegNet w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 0.794 ms 0 - 200 MB NPU RegNet.onnx.zip
RegNet w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 0.45 ms 0 - 165 MB NPU RegNet.tflite
RegNet w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 0.491 ms 0 - 169 MB NPU RegNet.dlc
RegNet w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 0.701 ms 0 - 150 MB NPU RegNet.onnx.zip
RegNet w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile TFLITE 0.984 ms 0 - 169 MB NPU RegNet.tflite
RegNet w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile QNN_DLC 1.174 ms 0 - 174 MB NPU RegNet.dlc
RegNet w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile ONNX 16.999 ms 8 - 26 MB CPU RegNet.onnx.zip
RegNet w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 0.395 ms 0 - 169 MB NPU RegNet.tflite
RegNet w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 0.446 ms 0 - 170 MB NPU RegNet.dlc
RegNet w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 0.667 ms 0 - 154 MB NPU RegNet.onnx.zip
RegNet w8a8 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 1.089 ms 0 - 0 MB NPU RegNet.dlc
RegNet w8a8 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 1.14 ms 21 - 21 MB NPU RegNet.onnx.zip

Installation

Install the package via pip:

pip install qai-hub-models

Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub Workbench with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.regnet.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.regnet.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.regnet.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.regnet import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.regnet.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.regnet.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on RegNet's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of RegNet can be found here.

References

Community

Downloads last month
182
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Paper for qualcomm/RegNet