bert-base-multilingual-cased-2-contract-sections-classification-v4-10
This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1797
- Accuracy Evaluate: 0.9603
- Precision Evaluate: 0.9530
- Recall Evaluate: 0.9655
- F1 Evaluate: 0.9578
- Accuracy Sklearn: 0.9603
- Precision Sklearn: 0.9623
- Recall Sklearn: 0.9603
- F1 Sklearn: 0.9605
- Acuracia Rotulo Objeto: 0.9917
- Acuracia Rotulo Obrigacoes: 0.9259
- Acuracia Rotulo Valor: 0.9284
- Acuracia Rotulo Vigencia: 0.9843
- Acuracia Rotulo Rescisao: 0.9169
- Acuracia Rotulo Foro: 1.0
- Acuracia Rotulo Reajuste: 0.9964
- Acuracia Rotulo Fiscalizacao: 0.9180
- Acuracia Rotulo Publicacao: 1.0
- Acuracia Rotulo Pagamento: 0.9783
- Acuracia Rotulo Casos Omissos: 0.9212
- Acuracia Rotulo Sancoes: 0.9908
- Acuracia Rotulo Dotacao Orcamentaria: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy Evaluate | Precision Evaluate | Recall Evaluate | F1 Evaluate | Accuracy Sklearn | Precision Sklearn | Recall Sklearn | F1 Sklearn | Acuracia Rotulo Objeto | Acuracia Rotulo Obrigacoes | Acuracia Rotulo Valor | Acuracia Rotulo Vigencia | Acuracia Rotulo Rescisao | Acuracia Rotulo Foro | Acuracia Rotulo Reajuste | Acuracia Rotulo Fiscalizacao | Acuracia Rotulo Publicacao | Acuracia Rotulo Pagamento | Acuracia Rotulo Casos Omissos | Acuracia Rotulo Sancoes | Acuracia Rotulo Dotacao Orcamentaria |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1.5525 | 1.0 | 1000 | 1.2169 | 0.7772 | 0.7719 | 0.7417 | 0.7406 | 0.7772 | 0.7416 | 0.7772 | 0.7485 | 0.9483 | 0.9209 | 0.8940 | 0.6719 | 0.7507 | 0.9192 | 0.8327 | 0.7886 | 0.9507 | 0.0 | 0.9113 | 0.3945 | 0.6593 |
| 0.4981 | 2.0 | 2000 | 0.4333 | 0.9337 | 0.9326 | 0.9382 | 0.9347 | 0.9337 | 0.9358 | 0.9337 | 0.9340 | 0.9773 | 0.8586 | 0.9255 | 0.9764 | 0.9418 | 0.9308 | 0.9680 | 0.8896 | 0.9951 | 0.9130 | 0.9212 | 0.8991 | 1.0 |
| 0.2197 | 3.0 | 3000 | 0.2467 | 0.9463 | 0.9473 | 0.9527 | 0.9494 | 0.9463 | 0.9474 | 0.9463 | 0.9463 | 0.9793 | 0.8872 | 0.9284 | 0.9790 | 0.9418 | 0.9385 | 0.9964 | 0.8896 | 0.9951 | 0.9565 | 0.9212 | 0.9725 | 1.0 |
| 0.1351 | 4.0 | 4000 | 0.2067 | 0.9503 | 0.9516 | 0.9565 | 0.9535 | 0.9503 | 0.9515 | 0.9503 | 0.9503 | 0.9835 | 0.8889 | 0.9284 | 0.9843 | 0.9418 | 0.9577 | 0.9751 | 0.9148 | 0.9951 | 0.9710 | 0.9212 | 0.9725 | 1.0 |
| 0.0967 | 5.0 | 5000 | 0.2049 | 0.951 | 0.9523 | 0.9589 | 0.9550 | 0.951 | 0.9525 | 0.951 | 0.9511 | 0.9814 | 0.8788 | 0.9341 | 0.9790 | 0.9418 | 0.9885 | 0.9751 | 0.9180 | 0.9951 | 0.9710 | 0.9212 | 0.9817 | 1.0 |
| 0.0697 | 6.0 | 6000 | 0.1977 | 0.953 | 0.9535 | 0.9612 | 0.9567 | 0.953 | 0.9544 | 0.953 | 0.9531 | 0.9814 | 0.8822 | 0.9284 | 0.9869 | 0.9418 | 0.9885 | 0.9786 | 0.9180 | 1.0 | 0.9783 | 0.9212 | 0.9908 | 1.0 |
| 0.0711 | 7.0 | 7000 | 0.1787 | 0.958 | 0.9516 | 0.9630 | 0.9561 | 0.958 | 0.9596 | 0.958 | 0.9582 | 0.9855 | 0.9276 | 0.9284 | 0.9869 | 0.9252 | 1.0 | 0.9751 | 0.9085 | 0.9951 | 0.9746 | 0.9212 | 0.9908 | 1.0 |
| 0.0614 | 8.0 | 8000 | 0.1885 | 0.9573 | 0.9511 | 0.9634 | 0.9561 | 0.9573 | 0.9591 | 0.9573 | 0.9575 | 0.9917 | 0.9091 | 0.9284 | 0.9843 | 0.9280 | 1.0 | 0.9751 | 0.9180 | 1.0 | 0.9783 | 0.9212 | 0.9908 | 1.0 |
| 0.0576 | 9.0 | 9000 | 0.1802 | 0.959 | 0.9510 | 0.9638 | 0.9559 | 0.959 | 0.9611 | 0.959 | 0.9593 | 0.9917 | 0.9310 | 0.9284 | 0.9843 | 0.9114 | 1.0 | 0.9751 | 0.9180 | 1.0 | 0.9783 | 0.9212 | 0.9908 | 1.0 |
| 0.0512 | 10.0 | 10000 | 0.1797 | 0.9603 | 0.9530 | 0.9655 | 0.9578 | 0.9603 | 0.9623 | 0.9603 | 0.9605 | 0.9917 | 0.9259 | 0.9284 | 0.9843 | 0.9169 | 1.0 | 0.9964 | 0.9180 | 1.0 | 0.9783 | 0.9212 | 0.9908 | 1.0 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 6
Model tree for marcelovidigal/bert-base-multilingual-cased-2-contract-sections-classification-v4-10
Base model
google-bert/bert-base-multilingual-cased