YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Advanced Multi-Model Orchestrator with Parent LLM Reasoning

πŸš€ A sophisticated multi-model orchestration system that uses a parent LLM to intelligently reason about and route tasks to the most appropriate child models.

🧠 The Innovation

Unlike traditional orchestrators that use simple heuristics or keyword matching, this system employs a parent LLM (distilgpt2) to analyze user requests and make intelligent routing decisions based on reasoning rather than pattern matching.

Parent LLM Prompt:

You are a router. Analyze this user request and choose the best model:
- "TEXT" for text summarization, Q&A, or text processing
- "CAPTION" for describing images
- "TEXT2IMG" for generating images from text
- "MULTIMODAL" for complex tasks requiring multiple models

Respond only with one keyword: TEXT, CAPTION, TEXT2IMG, or MULTIMODAL.

User request: <USER_PROMPT>
Response:

πŸ—οΈ Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   User Request  │───▢│  Parent LLM      │───▢│  Child Models   β”‚
β”‚                 β”‚    β”‚  (distilgpt2)    β”‚    β”‚                 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β”‚  β€’ Analyzes      β”‚    β”‚ β€’ TEXT          β”‚
                       β”‚  β€’ Routes        β”‚    β”‚ β€’ CAPTION       β”‚
                       β”‚  β€’ Confidences   β”‚    β”‚ β€’ TEXT2IMG      β”‚
                       β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

🎯 Key Features

🧠 Intelligent Reasoning

  • Parent LLM analyzes requests using natural language understanding
  • Makes routing decisions based on semantic meaning, not just keywords
  • Provides confidence scores for each routing decision

πŸ›‘οΈ Robust Error Handling

  • Fallback to heuristic routing if parent LLM fails
  • Comprehensive error handling and recovery mechanisms
  • Graceful degradation under failure conditions

πŸ“Š Performance Monitoring

  • Track routing accuracy and decision confidence
  • Monitor processing times and success rates
  • Task history and performance statistics

⚑ Async Processing

  • Non-blocking model loading and processing
  • Efficient handling of multiple concurrent requests
  • Optimized resource utilization

πŸ”§ Extensible Architecture

  • Easy addition of new child models
  • Configurable routing logic
  • Modular design for easy customization

πŸ“¦ Installation

pip install git+https://huggingface.co/kunaliitkgp09/multi-model-orchestrator

πŸš€ Quick Start

import asyncio
from advanced_orchestrator import AdvancedMultiModelOrchestrator

async def main():
    # Initialize the orchestrator
    orchestrator = AdvancedMultiModelOrchestrator(parent_model_name="distilgpt2")
    
    # Process a request
    result = await orchestrator.process_request("Generate an image of a peaceful forest")
    
    print(f"Task Type: {result.task_type.value}")
    print(f"Confidence: {result.confidence:.2f}")
    print(f"Output: {result.output}")
    print(f"Processing Time: {result.processing_time:.2f}s")

asyncio.run(main())

πŸ“‹ Usage Examples

Basic Request Processing

# Text processing request
result = await orchestrator.process_request("What is machine learning?")
# Parent LLM routes to TEXT model

# Image captioning request  
result = await orchestrator.process_request("Describe this image of a sunset")
# Parent LLM routes to CAPTION model

# Text-to-image request
result = await orchestrator.process_request("Generate an image of a futuristic city")
# Parent LLM routes to TEXT2IMG model

Multimodal Processing

# Process complex multimodal requests
results = await orchestrator.process_multimodal_request(
    image_path="sample_image.jpg",
    text_prompt="A serene landscape with mountains"
)

# Results contain both caption and generated image
caption_result = results["caption"]
generated_image_result = results["generated_image"]

Performance Monitoring

# Get performance statistics
stats = orchestrator.get_performance_stats()
print(f"Total Tasks: {stats['total_tasks']}")
print(f"Success Rate: {stats['success_rate']:.1%}")
print(f"Average Processing Time: {stats['average_processing_time']:.2f}s")

# Get task history
history = orchestrator.get_task_history()
for task in history:
    print(f"{task.task_type.value}: {task.input_data[:50]}...")

πŸ”§ Configuration

Model Configuration

from advanced_orchestrator import ModelConfig, TaskType

# Custom model configuration
config = ModelConfig(
    name="your-custom-model",
    model_type=TaskType.TEXT,
    device="cuda",
    max_length=512,
    temperature=0.7
)

Parent LLM Configuration

# Use different parent LLM
orchestrator = AdvancedMultiModelOrchestrator(
    parent_model_name="gpt2"  # or any other model
)

πŸ“Š Demo Results

The demo shows the system's capabilities:

  • Routing Accuracy: 62.5% (5/8 correct decisions)
  • Confidence Levels: 0.29-0.43 per decision
  • Task Types Supported: TEXT, CAPTION, TEXT2IMG, MULTIMODAL
  • Processing Speed: Async processing for optimal performance

Sample Routing Decisions

Request: "Summarize this article about AI"
Decision: TEXT (Confidence: 0.43) βœ…

Request: "Describe this image of a sunset"  
Decision: CAPTION (Confidence: 0.43) βœ…

Request: "Generate an image of a forest"
Decision: TEXT (Confidence: 0.29) ❌
Expected: TEXT2IMG

πŸ”— Child Models

Text Processing (TEXT)

  • Model: distilgpt2
  • Tasks: Summarization, Q&A, text generation
  • Use Cases: Content creation, information extraction

Image Captioning (CAPTION)

  • Model: kunaliitkgp09/clip-gpt2-image-captioner
  • Tasks: Image description, visual content analysis
  • Use Cases: Accessibility, content moderation

Text-to-Image Generation (TEXT2IMG)

  • Model: kunaliitkgp09/flickr30k-text-to-image
  • Tasks: Image generation from text descriptions
  • Use Cases: Creative content, visualization

πŸ› οΈ Advanced Features

Custom Routing Logic

class CustomParentRouter(ParentLLMRouter):
    def analyze_request(self, user_request: str):
        # Custom routing logic
        # Override the default behavior
        pass

Model Caching

# Models are automatically cached after first load
# Subsequent requests use cached models for faster processing

Error Recovery

# Automatic fallback to heuristic routing
# Comprehensive error logging and reporting

πŸ“ˆ Performance Optimization

Async Processing

  • Non-blocking model operations
  • Concurrent request handling
  • Efficient resource utilization

Memory Management

  • Automatic model unloading when not in use
  • Optimized memory allocation
  • GPU memory management

Caching Strategies

  • Model weight caching
  • Result caching for repeated requests
  • Intelligent cache invalidation

πŸ” Troubleshooting

Common Issues

  1. Low Routing Accuracy

    • Try different parent LLM models
    • Adjust confidence thresholds
    • Review training data quality
  2. Slow Processing

    • Enable GPU acceleration
    • Use model caching
    • Optimize batch processing
  3. Memory Issues

    • Reduce model size
    • Enable gradient checkpointing
    • Use CPU offloading

Debug Mode

import logging
logging.basicConfig(level=logging.DEBUG)

# Detailed logging for troubleshooting

πŸš€ Future Enhancements

Planned Features

  • Multi-step reasoning for complex tasks
  • Dynamic model selection based on context
  • Self-improving routing through feedback loops
  • Support for more model types
  • Distributed processing capabilities

Research Directions

  • Advanced reasoning capabilities
  • Meta-learning for routing optimization
  • Cross-modal understanding
  • Adaptive model selection

🀝 Contributing

Contributions are welcome! Please feel free to submit pull requests or open issues for:

  • New child model integrations
  • Performance improvements
  • Bug fixes
  • Documentation enhancements

πŸ“„ License

This project is licensed under the MIT License.

πŸ™ Acknowledgments

  • Hugging Face: For providing the model hosting platform
  • DistilGPT2: For the parent LLM reasoning capabilities
  • CLIP-GPT2: For image captioning functionality
  • Stable Diffusion: For text-to-image generation

Happy Orchestrating! πŸš€

This project represents a step toward more intelligent AI systems that can reason about which specialized models to use for different tasks.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support