samsum_42

This model is a fine-tuned version of google/t5-v1_1-base on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4581
  • Rouge1: 49.7002
  • Rouge2: 25.389
  • Rougel: 41.5256
  • Rougelsum: 46.1176
  • Gen Len: 23.9156
  • Test Rougel: 41.4764
  • Df Rougel: 41.6558
  • Unlearn Overall Rougel: 0.4103
  • Unlearn Time: 2098.8050

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len Overall Rougel Unlearn Overall Rougel Time
No log 1.0 461 1.4818 48.9248 24.5221 42.0397 45.2492 23.5880 -0.1631 -0.1631 -1
No log 2.0 922 1.4703 49.3631 24.68 42.0483 45.5475 25.4535 -0.1475 -0.1475 -1
1.8739 3.0 1383 1.4593 49.5829 25.1916 41.7802 45.8602 24.1100 0.3212 0.3212 -1
1.8739 4.0 1844 1.4581 49.7002 25.389 41.6558 46.1176 23.9156 0.4103 0.4103 -1
1.7611 5.0 2305 1.4528 49.6984 25.2958 41.9786 45.9853 24.0660 0.2808 0.2808 -1

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.0
  • Tokenizers 0.15.2
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for jialicheng/unlearn_samsum_t5-base_random_label_4_42

Finetuned
(54)
this model

Evaluation results