See axolotl config
axolotl version: 0.12.2
base_model: Qwen/Qwen2.5-VL-3B-Instruct
processor_type: AutoProcessor
# these 3 lines are needed for now to handle vision chat templates w images
skip_prepare_dataset: true
remove_unused_columns: false
sample_packing: false
chat_template: qwen2_vl
datasets:
- path: e-zorzi/reasoning_distractors_chat
type: chat_template
split: train
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./outputs/out_qwen_fft_new
#load_in_8bit: True
#adapter: lora
lora_model_dir:
sequence_len: 2046 #8192
pad_to_sequence_len: false
#lora_r: 64
#lora_alpha: 16
#lora_dropout: 0.05
#lora_target_modules: 'model.language_model.layers.[\d]+.(mlp|cross_attn|self_attn).(up|down|gate|q|k|v|o)_proj'
wandb_project: axolotl_finetunes
wandb_entity: edo_vi
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 8
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0001 #0.0002
bf16: true
fp16:
tf32: true
gradient_checkpointing: true
logging_steps: 1
flash_attention: true
eager_attention:
warmup_ratio: 0.1
evals_per_epoch: 1
saves_per_epoch: 1
weight_decay: 0.0
#vision_encoder_unfreeze: false
# save_first_step: true # uncomment this to validate checkpoint saving works with your config
outputs/out_qwen_fft_new
This model is a fine-tuned version of Qwen/Qwen2.5-VL-3B-Instruct on the e-zorzi/reasoning_distractors_chat dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 31
- training_steps: 310
Training results
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- -
Model tree for e-zorzi/Qwen2.5-VL-3B-Instruct-sft-v2
Base model
Qwen/Qwen2.5-VL-3B-Instruct