|
|
import tensorflow as tf |
|
|
import numpy as np |
|
|
import matplotlib |
|
|
|
|
|
def one_hot_encode_along_row_axis(sequence): |
|
|
to_return = np.zeros((1, len(sequence), 4), dtype=np.int8) |
|
|
seq_to_one_hot_fill_in_array(zeros_array=to_return[0], sequence=sequence, one_hot_axis=1) |
|
|
return to_return |
|
|
|
|
|
|
|
|
def seq_to_one_hot_fill_in_array(zeros_array, sequence, one_hot_axis): |
|
|
assert one_hot_axis == 0 or one_hot_axis == 1 |
|
|
if one_hot_axis == 0: |
|
|
assert zeros_array.shape[1] == len(sequence) |
|
|
elif one_hot_axis == 1: |
|
|
assert zeros_array.shape[0] == len(sequence) |
|
|
for (i, char) in enumerate(sequence): |
|
|
if char == "A" or char == "a": |
|
|
char_idx = 0 |
|
|
elif char == "C" or char == "c": |
|
|
char_idx = 1 |
|
|
elif char == "G" or char == "g": |
|
|
char_idx = 2 |
|
|
elif char == "T" or char == "t": |
|
|
char_idx = 3 |
|
|
elif char == "N" or char == "n": |
|
|
continue |
|
|
else: |
|
|
raise RuntimeError("Unsupported character: " + str(char)) |
|
|
if one_hot_axis == 0: |
|
|
zeros_array[char_idx, i] = 1 |
|
|
elif one_hot_axis == 1: |
|
|
zeros_array[i, char_idx] = 1 |
|
|
|
|
|
|
|
|
def readfile(filename): |
|
|
ids = [] |
|
|
ids_d = {} |
|
|
seqs = {} |
|
|
f = open(filename, 'r') |
|
|
lines = f.readlines() |
|
|
f.close() |
|
|
seq = [] |
|
|
for line in lines: |
|
|
if line[0] == '>': |
|
|
ids.append(line[1:].rstrip('\n')) |
|
|
id_line = line[1:].rstrip('\n').split('_')[0] |
|
|
if id_line not in seqs: |
|
|
seqs[id_line] = [] |
|
|
if id_line not in ids_d: |
|
|
ids_d[id_line] = id_line |
|
|
if seq: |
|
|
seqs[ids[-2].split('_')[0]] = ("".join(seq)) |
|
|
seq = [] |
|
|
else: |
|
|
seq.append(line.rstrip('\n').upper()) |
|
|
if seq: |
|
|
seqs[ids[-1].split('_')[0]] = ("".join(seq)) |
|
|
|
|
|
return ids, ids_d, seqs |
|
|
|
|
|
|
|
|
def prepare_data(filename): |
|
|
ids, ids_d, seqs, = readfile(filename) |
|
|
X = np.array([one_hot_encode_along_row_axis(seqs[id_]) for id_ in ids_d]).squeeze(axis=1) |
|
|
data = X |
|
|
return data, ids |
|
|
|
|
|
|
|
|
def plot_prediction_givenax(model, fig, ntrack, track_no, seq_onehot): |
|
|
NUM_CLASSES = model.output_shape[1] |
|
|
real_score = model.predict(seq_onehot)[0] |
|
|
ax = fig.add_subplot(ntrack, 2, track_no*2-1) |
|
|
ax.margins(x=0) |
|
|
ax.set_ylabel('Prediction', color='red') |
|
|
ax.plot(real_score, '--', color='gray', linewidth=3) |
|
|
ax.scatter(range(NUM_CLASSES), real_score, marker='o', color='red', linewidth=11) |
|
|
ax.tick_params(axis='y', labelcolor='red') |
|
|
ax.set_xticks(range(NUM_CLASSES),) |
|
|
ax.set_xticklabels(range(1, NUM_CLASSES+1)) |
|
|
ax.grid(True) |
|
|
return ax |
|
|
|
|
|
|
|
|
def create_saturation_mutagenesis_x(onehot): |
|
|
mutagenesis_X = {"X":[],"ids":[]} |
|
|
onehot = onehot.squeeze() |
|
|
for mutloc,nt in enumerate(onehot): |
|
|
new_X = np.copy(onehot) |
|
|
if list(nt) == [1, 0, 0, 0]: |
|
|
new_X[mutloc,:] = np.array([0, 1, 0, 0], dtype='int8') |
|
|
mutagenesis_X["X"].append(np.copy(new_X)) |
|
|
new_X[mutloc,:] = np.array([0, 0, 1, 0], dtype='int8') |
|
|
mutagenesis_X["X"].append(np.copy(new_X)) |
|
|
new_X[mutloc,:] = np.array([0, 0, 0, 1], dtype='int8') |
|
|
mutagenesis_X["X"].append(np.copy(new_X)) |
|
|
mutagenesis_X["ids"].append(str(mutloc)+"_C") |
|
|
mutagenesis_X["ids"].append(str(mutloc)+"_G") |
|
|
mutagenesis_X["ids"].append(str(mutloc)+"_T") |
|
|
if list(nt) == [0, 1, 0, 0]: |
|
|
new_X[mutloc,:] = np.array([1, 0, 0, 0], dtype='int8') |
|
|
mutagenesis_X["X"].append(np.copy(new_X)) |
|
|
new_X[mutloc,:] = np.array([0, 0, 1, 0], dtype='int8') |
|
|
mutagenesis_X["X"].append(np.copy(new_X)) |
|
|
new_X[mutloc,:] = np.array([0, 0, 0, 1], dtype='int8') |
|
|
mutagenesis_X["X"].append(np.copy(new_X)) |
|
|
mutagenesis_X["ids"].append(str(mutloc)+"_A") |
|
|
mutagenesis_X["ids"].append(str(mutloc)+"_G") |
|
|
mutagenesis_X["ids"].append(str(mutloc)+"_T") |
|
|
if list(nt) == [0, 0, 1, 0]: |
|
|
new_X[mutloc,:] = np.array([1, 0, 0, 0], dtype='int8') |
|
|
mutagenesis_X["X"].append(np.copy(new_X)) |
|
|
new_X[mutloc,:] = np.array([0, 1, 0, 0], dtype='int8') |
|
|
mutagenesis_X["X"].append(np.copy(new_X)) |
|
|
new_X[mutloc,:] = np.array([0, 0, 0, 1], dtype='int8') |
|
|
mutagenesis_X["X"].append(np.copy(new_X)) |
|
|
mutagenesis_X["ids"].append(str(mutloc)+"_A") |
|
|
mutagenesis_X["ids"].append(str(mutloc)+"_C") |
|
|
mutagenesis_X["ids"].append(str(mutloc)+"_T") |
|
|
if list(nt) == [0, 0, 0, 1]: |
|
|
new_X[mutloc,:] = np.array([1, 0, 0, 0], dtype='int8') |
|
|
mutagenesis_X["X"].append(np.copy(new_X)) |
|
|
new_X[mutloc,:] = np.array([0, 1, 0, 0], dtype='int8') |
|
|
mutagenesis_X["X"].append(np.copy(new_X)) |
|
|
new_X[mutloc,:] = np.array([0, 0, 1, 0], dtype='int8') |
|
|
mutagenesis_X["X"].append(np.copy(new_X)) |
|
|
mutagenesis_X["ids"].append(str(mutloc)+"_A") |
|
|
mutagenesis_X["ids"].append(str(mutloc)+"_C") |
|
|
mutagenesis_X["ids"].append(str(mutloc)+"_G") |
|
|
|
|
|
mutagenesis_X["X"] = np.array(mutagenesis_X["X"]) |
|
|
return mutagenesis_X |
|
|
|
|
|
|
|
|
def plot_mutagenesis_givenax(model, fig, ntrack, track_no, seq_onehot, class_no): |
|
|
|
|
|
mutagenesis_X = create_saturation_mutagenesis_x(seq_onehot) |
|
|
prediction_mutagenesis_X = model.predict(mutagenesis_X["X"]) |
|
|
original_prediction = model.predict(seq_onehot) |
|
|
class_no = class_no-1 |
|
|
seq_shape = (seq_onehot.shape[1],seq_onehot.shape[2]) |
|
|
|
|
|
arr_a = np.zeros(seq_shape[0]) |
|
|
arr_c = np.zeros(seq_shape[0]) |
|
|
arr_g = np.zeros(seq_shape[0]) |
|
|
arr_t = np.zeros(seq_shape[0]) |
|
|
delta_pred = original_prediction[:,class_no] - prediction_mutagenesis_X[:,class_no] |
|
|
for i,mut in enumerate(mutagenesis_X["ids"]): |
|
|
if mut.endswith("A"): |
|
|
arr_a[int(mut.split("_")[0])]=delta_pred[i] |
|
|
if mut.endswith("C"): |
|
|
arr_c[int(mut.split("_")[0])]=delta_pred[i] |
|
|
if mut.endswith("G"): |
|
|
arr_g[int(mut.split("_")[0])]=delta_pred[i] |
|
|
if mut.endswith("T"): |
|
|
arr_t[int(mut.split("_")[0])]=delta_pred[i] |
|
|
|
|
|
arr_a[arr_a == 0] = None |
|
|
arr_c[arr_c == 0] = None |
|
|
arr_g[arr_g == 0] = None |
|
|
arr_t[arr_t == 0] = None |
|
|
|
|
|
ax = fig.add_subplot(ntrack, 1, track_no) |
|
|
ax.set_ylabel('In silico\nMutagenesis') |
|
|
ax.scatter(range(seq_shape[0]), -1*arr_a, label='A', color='green') |
|
|
ax.scatter(range(seq_shape[0]), -1*arr_c, label='C', color='blue') |
|
|
ax.scatter(range(seq_shape[0]), -1*arr_g, label='G', color='orange') |
|
|
ax.scatter(range(seq_shape[0]), -1*arr_t, label='T', color='red') |
|
|
ax.legend() |
|
|
ax.axhline(y=0, linestyle='--', color='gray') |
|
|
ax.set_xlim((0, seq_shape[0])) |
|
|
_ = ax.set_xticks(np.arange(0, seq_shape[0]+1, 10)) |
|
|
|
|
|
return ax |
|
|
|
|
|
|
|
|
def insilico_evolution(regions, model, class_no, n_mutation): |
|
|
|
|
|
nuc_to_onehot = {"A":[1, 0, 0, 0],"C":[0, 1, 0, 0],"G":[0, 0, 1, 0],"T":[0, 0, 0, 1]} |
|
|
mutation_pred = [] |
|
|
mutation_loc = [] |
|
|
print("Sequence index:",end=" ") |
|
|
for id_ in range(len(regions)): |
|
|
start_x = np.copy(regions[id_:id_+1]) |
|
|
pred = [] |
|
|
mut = [] |
|
|
for i in range(n_mutation): |
|
|
mutagenesis_X = create_saturation_mutagenesis_x(start_x) |
|
|
prediction_mutagenesis_X = model.predict(mutagenesis_X["X"]) |
|
|
original_prediction = model.predict(start_x) |
|
|
|
|
|
|
|
|
|
|
|
next_one = mutagenesis_X["ids"][np.argmax(prediction_mutagenesis_X[:,class_no-1]-original_prediction[:,class_no-1])] |
|
|
pred.append(original_prediction) |
|
|
mut.append(next_one) |
|
|
start_x[0][int(next_one.split("_")[0]),:] = np.array(nuc_to_onehot[next_one.split("_")[1]], dtype='int8') |
|
|
original_prediction = model.predict(start_x) |
|
|
pred.append(original_prediction) |
|
|
mutation_pred.append(pred) |
|
|
mutation_loc.append(mut) |
|
|
print(id_,end=",") |
|
|
mutation_pred = np.array(mutation_pred).squeeze() |
|
|
mutation_loc = np.array(mutation_loc) |
|
|
return mutation_pred, mutation_loc |
|
|
|
|
|
|
|
|
def random_sequence_by_shuffling(seq_to_shuffle, number_of_random_regions): |
|
|
seq_to_shuffle_onehot = one_hot_encode_along_row_axis(seq_to_shuffle) |
|
|
shuffled_regions = [] |
|
|
for i in range(number_of_random_regions): |
|
|
np.random.shuffle(seq_to_shuffle_onehot[0]) |
|
|
shuffled_regions.append(np.copy(seq_to_shuffle_onehot[0])) |
|
|
shuffled_regions = np.array(shuffled_regions) |
|
|
return shuffled_regions |
|
|
|
|
|
|
|
|
def random_sequence(seq_len, number_of_random_regions): |
|
|
random_regions = [] |
|
|
for k in range(number_of_random_regions): |
|
|
seq = [] |
|
|
for i in range(seq_len): |
|
|
seq.append(np.random.choice(["A","C","G","T"])) |
|
|
random_regions.append(one_hot_encode_along_row_axis("".join(seq)).squeeze()) |
|
|
random_regions = np.array(random_regions) |
|
|
return random_regions |
|
|
|
|
|
|
|
|
def random_sequence_gc_adjusted(seq_len, number_of_random_regions, path_to_use_GC_content): |
|
|
regions_to_use_GC = prepare_data(path_to_use_GC_content) |
|
|
ACGT_dist = np.sum(regions_to_use_GC[0],axis=0)/len(regions_to_use_GC[0]) |
|
|
random_regions = [] |
|
|
for k in range(number_of_random_regions): |
|
|
seq = [] |
|
|
for i in range(seq_len): |
|
|
seq.append(np.random.choice(["A","C","G","T"],p=list(ACGT_dist[i]))) |
|
|
random_regions.append(one_hot_encode_along_row_axis("".join(seq)).squeeze()) |
|
|
random_regions = np.array(random_regions) |
|
|
return random_regions |
|
|
|
|
|
|
|
|
def plot_deepexplainer_givenax(explainer, fig, ntrack, track_no, seq_onehot): |
|
|
shap_values_ = explainer.shap_values(seq_onehot,ranked_outputs=1,check_additivity=False) |
|
|
_, ax1 = plot_weights(shap_values_[0]*seq_onehot, |
|
|
fig, ntrack, 1, track_no, |
|
|
title="", subticks_frequency=10, ylab="") |
|
|
return ax1 |
|
|
|
|
|
|
|
|
def load_model(path_json, path_hdf5): |
|
|
model_json_file = open(path_json) |
|
|
model_json = model_json_file.read() |
|
|
model = tf.keras.models.model_from_json(model_json) |
|
|
model.load_weights(path_hdf5) |
|
|
return model |
|
|
|
|
|
|
|
|
def add_pattern_to_best_location(pattern, regions, model, class_no): |
|
|
pattern_added_regions = np.zeros(regions.shape,dtype="int") |
|
|
pattern_locations = np.zeros(regions.shape[0],dtype="int") |
|
|
print("Sequence index:",end=" ") |
|
|
for r, region in enumerate(regions): |
|
|
tmp_array = np.zeros((regions.shape[1]-pattern.shape[1]+1,regions.shape[1],regions.shape[2])) |
|
|
for nt in range(tmp_array.shape[0]): |
|
|
tmp_array[nt] = np.copy(region) |
|
|
tmp_array[nt,nt:nt+pattern.shape[1],:] = pattern[0] |
|
|
prediction = model.predict(tmp_array)[:,class_no-1] |
|
|
pattern_locations[r] = np.argmax(prediction) |
|
|
pattern_added_regions[r] = tmp_array[pattern_locations[r]] |
|
|
print(r,end=",") |
|
|
print("") |
|
|
return {"regions":pattern_added_regions, "locations":pattern_locations} |
|
|
|
|
|
|
|
|
def plot_a(ax, base, left_edge, height, color): |
|
|
a_polygon_coords = [ |
|
|
np.array([ |
|
|
[0.0, 0.0], |
|
|
[0.5, 1.0], |
|
|
[0.5, 0.8], |
|
|
[0.2, 0.0], |
|
|
]), |
|
|
np.array([ |
|
|
[1.0, 0.0], |
|
|
[0.5, 1.0], |
|
|
[0.5, 0.8], |
|
|
[0.8, 0.0], |
|
|
]), |
|
|
np.array([ |
|
|
[0.225, 0.45], |
|
|
[0.775, 0.45], |
|
|
[0.85, 0.3], |
|
|
[0.15, 0.3], |
|
|
]) |
|
|
] |
|
|
for polygon_coords in a_polygon_coords: |
|
|
ax.add_patch(matplotlib.patches.Polygon((np.array([1, height])[None, :] * polygon_coords |
|
|
+ np.array([left_edge, base])[None, :]), |
|
|
facecolor=color, edgecolor=color)) |
|
|
|
|
|
|
|
|
def plot_c(ax, base, left_edge, height, color): |
|
|
ax.add_patch(matplotlib.patches.Ellipse(xy=[left_edge + 0.65, base + 0.5 * height], width=1.3, height=height, |
|
|
facecolor=color, edgecolor=color)) |
|
|
ax.add_patch( |
|
|
matplotlib.patches.Ellipse(xy=[left_edge + 0.65, base + 0.5 * height], width=0.7 * 1.3, height=0.7 * height, |
|
|
facecolor='white', edgecolor='white')) |
|
|
ax.add_patch(matplotlib.patches.Rectangle(xy=[left_edge + 1, base], width=1.0, height=height, |
|
|
facecolor='white', edgecolor='white', fill=True)) |
|
|
|
|
|
|
|
|
def plot_g(ax, base, left_edge, height, color): |
|
|
ax.add_patch(matplotlib.patches.Ellipse(xy=[left_edge + 0.65, base + 0.5 * height], width=1.3, height=height, |
|
|
facecolor=color, edgecolor=color)) |
|
|
ax.add_patch( |
|
|
matplotlib.patches.Ellipse(xy=[left_edge + 0.65, base + 0.5 * height], width=0.7 * 1.3, height=0.7 * height, |
|
|
facecolor='white', edgecolor='white')) |
|
|
ax.add_patch(matplotlib.patches.Rectangle(xy=[left_edge + 1, base], width=1.0, height=height, |
|
|
facecolor='white', edgecolor='white', fill=True)) |
|
|
ax.add_patch( |
|
|
matplotlib.patches.Rectangle(xy=[left_edge + 0.825, base + 0.085 * height], width=0.174, height=0.415 * height, |
|
|
facecolor=color, edgecolor=color, fill=True)) |
|
|
ax.add_patch( |
|
|
matplotlib.patches.Rectangle(xy=[left_edge + 0.625, base + 0.35 * height], width=0.374, height=0.15 * height, |
|
|
facecolor=color, edgecolor=color, fill=True)) |
|
|
|
|
|
|
|
|
def plot_t(ax, base, left_edge, height, color): |
|
|
ax.add_patch(matplotlib.patches.Rectangle(xy=[left_edge + 0.4, base], |
|
|
width=0.2, height=height, facecolor=color, edgecolor=color, fill=True)) |
|
|
ax.add_patch(matplotlib.patches.Rectangle(xy=[left_edge, base + 0.8 * height], |
|
|
width=1.0, height=0.2 * height, facecolor=color, edgecolor=color, |
|
|
fill=True)) |
|
|
|
|
|
|
|
|
default_colors = {0: 'green', 1: 'blue', 2: 'orange', 3: 'red'} |
|
|
default_plot_funcs = {0: plot_a, 1: plot_c, 2: plot_g, 3: plot_t} |
|
|
|
|
|
|
|
|
def plot_weights_given_ax(ax, array, |
|
|
height_padding_factor, |
|
|
length_padding, |
|
|
subticks_frequency, |
|
|
highlight, |
|
|
colors=default_colors, |
|
|
plot_funcs=default_plot_funcs): |
|
|
if len(array.shape) == 3: |
|
|
array = np.squeeze(array) |
|
|
assert len(array.shape) == 2, array.shape |
|
|
if array.shape[0] == 4 and array.shape[1] != 4: |
|
|
array = array.transpose(1, 0) |
|
|
assert array.shape[1] == 4 |
|
|
max_pos_height = 0.0 |
|
|
min_neg_height = 0.0 |
|
|
heights_at_positions = [] |
|
|
depths_at_positions = [] |
|
|
for i in range(array.shape[0]): |
|
|
acgt_vals = sorted(enumerate(array[i, :]), key=lambda x: abs(x[1])) |
|
|
positive_height_so_far = 0.0 |
|
|
negative_height_so_far = 0.0 |
|
|
for letter in acgt_vals: |
|
|
plot_func = plot_funcs[letter[0]] |
|
|
color = colors[letter[0]] |
|
|
if letter[1] > 0: |
|
|
height_so_far = positive_height_so_far |
|
|
positive_height_so_far += letter[1] |
|
|
else: |
|
|
height_so_far = negative_height_so_far |
|
|
negative_height_so_far += letter[1] |
|
|
plot_func(ax=ax, base=height_so_far, left_edge=i, height=letter[1], color=color) |
|
|
max_pos_height = max(max_pos_height, positive_height_so_far) |
|
|
min_neg_height = min(min_neg_height, negative_height_so_far) |
|
|
heights_at_positions.append(positive_height_so_far) |
|
|
depths_at_positions.append(negative_height_so_far) |
|
|
|
|
|
for color in highlight: |
|
|
for start_pos, end_pos in highlight[color]: |
|
|
assert start_pos >= 0.0 and end_pos <= array.shape[0] |
|
|
min_depth = np.min(depths_at_positions[start_pos:end_pos]) |
|
|
max_height = np.max(heights_at_positions[start_pos:end_pos]) |
|
|
ax.add_patch( |
|
|
matplotlib.patches.Rectangle(xy=[start_pos, min_depth], |
|
|
width=end_pos - start_pos, |
|
|
height=max_height - min_depth, |
|
|
edgecolor=color, fill=False)) |
|
|
|
|
|
ax.set_xlim(-length_padding, array.shape[0] + length_padding) |
|
|
ax.xaxis.set_ticks(np.arange(0.0, array.shape[0] + 1, subticks_frequency)) |
|
|
height_padding = max(abs(min_neg_height) * (height_padding_factor), |
|
|
abs(max_pos_height) * (height_padding_factor)) |
|
|
ax.set_ylim(min_neg_height - height_padding, max_pos_height + height_padding) |
|
|
return ax |
|
|
|
|
|
|
|
|
def plot_weights(array, fig, n, n1, n2, title='', ylab='', |
|
|
height_padding_factor=0.2, |
|
|
length_padding=1.0, |
|
|
subticks_frequency=20, |
|
|
colors=default_colors, |
|
|
plot_funcs=default_plot_funcs, |
|
|
highlight={}): |
|
|
ax = fig.add_subplot(n, n1, n2) |
|
|
ax.set_title(title) |
|
|
ax.set_ylabel(ylab) |
|
|
y = plot_weights_given_ax(ax=ax, array=array, |
|
|
height_padding_factor=height_padding_factor, |
|
|
length_padding=length_padding, |
|
|
subticks_frequency=subticks_frequency, |
|
|
colors=colors, |
|
|
plot_funcs=plot_funcs, |
|
|
highlight=highlight) |
|
|
return fig, ax |
|
|
|