xingyusu commited on
Commit
8379ea4
·
1 Parent(s): 6345445
Files changed (26) hide show
  1. the_code/General/Generative_model.html +0 -0
  2. the_code/General/Generative_model.ipynb +127 -0
  3. the_code/General/Motif_implantation.html +0 -0
  4. the_code/General/Motif_implantation.ipynb +0 -0
  5. the_code/General/Sequence_evolution.html +0 -0
  6. the_code/General/Sequence_evolution.ipynb +0 -0
  7. the_code/General/data/DeepFlyBrain_data.pkl +3 -0
  8. the_code/General/data/DeepMEL2_data.pkl +3 -0
  9. the_code/General/data/KC_regions.fa +3 -0
  10. the_code/General/data/MEL_regions.fa +3 -0
  11. the_code/General/models/DeepFlyBrain/DeepFlyBrain_architecture.json +1 -0
  12. the_code/General/models/DeepFlyBrain/DeepFlyBrain_weights.hdf5 +3 -0
  13. the_code/General/models/DeepMEL2/DeepMEL2_architecture.json +1 -0
  14. the_code/General/models/DeepMEL2/DeepMEL2_weights.hdf5 +3 -0
  15. the_code/General/models/KC_GAN/KC_GAN_disc_architecture.json +1 -0
  16. the_code/General/models/KC_GAN/KC_GAN_disc_iter210k_weights.hdf5 +3 -0
  17. the_code/General/models/KC_GAN/KC_GAN_gen_architecture.json +1 -0
  18. the_code/General/models/KC_GAN/KC_GAN_gen_iter210k_weights.hdf5 +3 -0
  19. the_code/General/models/MEL_GAN/MEL_GAN_disc_architecture.json +1 -0
  20. the_code/General/models/MEL_GAN/MEL_GAN_disc_iter160k_weights.hdf5 +3 -0
  21. the_code/General/models/MEL_GAN/MEL_GAN_gen_architecture.json +1 -0
  22. the_code/General/models/MEL_GAN/MEL_GAN_gen_iter160k_weights.hdf5 +3 -0
  23. the_code/General/output/testdata_motif_implant_100seqs.pkl +3 -0
  24. the_code/General/output/testdata_sequence_evolution_10seqs.pkl +3 -0
  25. the_code/General/utils.py +412 -0
  26. the_code/General/wgan_gp.py +344 -0
the_code/General/Generative_model.html ADDED
The diff for this file is too large to render. See raw diff
 
the_code/General/Generative_model.ipynb ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "3b921d47-d760-4438-b754-8a6d805e9415",
6
+ "metadata": {},
7
+ "source": [
8
+ "### The GAN models were trained using a conda environment. Below you can find how to create the same environment to train GAN models and generate sequences"
9
+ ]
10
+ },
11
+ {
12
+ "cell_type": "code",
13
+ "execution_count": null,
14
+ "id": "0cd67f38-a1bf-4234-bbad-cf5baa718e59",
15
+ "metadata": {},
16
+ "outputs": [],
17
+ "source": [
18
+ "# %%bash\n",
19
+ "# conda create --name deeplearning_py36_tf114_gpu python=3.6 tensorflow-gpu=1.14.0 keras-gpu=2.2.4\n",
20
+ "# conda activate deeplearning_py36_tf114_gpu\n",
21
+ "# conda install numpy=1.16.2 matplotlib=3.1.1 shap=0.29.3 ipykernel=5.1.2"
22
+ ]
23
+ },
24
+ {
25
+ "cell_type": "markdown",
26
+ "id": "a03be807-48c6-42c9-90ec-f1a2e16d95f1",
27
+ "metadata": {},
28
+ "source": [
29
+ "### Below you can find explanation of parameters that were used to train model and generate sequences.\n",
30
+ "#### (These variables can be found in the beginning of __wgan_gp.py__)"
31
+ ]
32
+ },
33
+ {
34
+ "cell_type": "markdown",
35
+ "id": "3a272a4a-71da-40ac-9906-a74c62bfe3f8",
36
+ "metadata": {},
37
+ "source": [
38
+ "__BATCH_SIZE__: Batch size (how many regions will be used in each iteration). \\\n",
39
+ "__ITERS__: Number of batch iterations to train the model. \\\n",
40
+ "__SEQ_LEN__: Length of the input sequences. \\\n",
41
+ "__SEQ_DIM__: Dimension of the input sequences. (4 nucleotides) \\\n",
42
+ "__DIM__: Dimension of the model. It is used in latent space and convolutional layers. \\\n",
43
+ "__CRITIC_ITERS__: How many training iterations will be done for Discriminator for each Generator iteration. \\\n",
44
+ "__LAMBDA__: Hyperparameter for gradient penalty. \\\n",
45
+ "__loginterval__: Once every N iteration the log will be saved. \\\n",
46
+ "__seqinterval__: Once every N iteration the sample sequences will be generated. \\\n",
47
+ "__modelinterval__: Once every N iteration the model files will be saved. \\\n",
48
+ "__selectedmodel__: When generating sequences, the iteration number of the model you want to use. \\\n",
49
+ "__suffix__: When generating sequences, the suffix to add to the header of the fasta regions. \\\n",
50
+ "__ngenerate__: When generating sequences, number of sequences you want to generate relative to batchsize. Example: 1 (128 sequences will be generated if the batch size is 128) \\\n",
51
+ "__outputdirc__: Path the to output folder. \\\n",
52
+ "__fastafile__: Path to the fasta file to use as real enhancers "
53
+ ]
54
+ },
55
+ {
56
+ "cell_type": "markdown",
57
+ "id": "9a4ab1ed-8973-4026-9d66-98f2ca6d764d",
58
+ "metadata": {},
59
+ "source": [
60
+ "### How to run the model"
61
+ ]
62
+ },
63
+ {
64
+ "cell_type": "code",
65
+ "execution_count": null,
66
+ "id": "832087a8-fa27-4250-bb4e-066a52ded090",
67
+ "metadata": {},
68
+ "outputs": [],
69
+ "source": [
70
+ "# %%bash\n",
71
+ "# conda activate deeplearning_py36_tf114_gpu\n",
72
+ "# python wgan_gp.py"
73
+ ]
74
+ },
75
+ {
76
+ "cell_type": "markdown",
77
+ "id": "efc65b44-515e-4dd8-9bb9-81d1f0ceaa13",
78
+ "metadata": {},
79
+ "source": [
80
+ "### This will result following outputs"
81
+ ]
82
+ },
83
+ {
84
+ "cell_type": "markdown",
85
+ "id": "cb3d54fd-11d2-4fa8-92c7-b85c4007ad00",
86
+ "metadata": {},
87
+ "source": [
88
+ "__./models/__: Folder containing saved model's weight files. \\\n",
89
+ "__./samples_ACGT/__: Folder containing sampled sequences during training. \\\n",
90
+ "__./samples_raw/__: Folder containing sampled sequences (in their raw format) during training. \\\n",
91
+ "__./gen_seq/__: Folder containing generated sequences after training. \\\n",
92
+ "__./disc.json__: Architecture file of the discriminator. \\\n",
93
+ "__./gen.json__: Architecture file of the generator. \\\n",
94
+ "__./d_g_loss.pkl__: Logged loss values during training. "
95
+ ]
96
+ },
97
+ {
98
+ "cell_type": "code",
99
+ "execution_count": null,
100
+ "id": "9aa94e0f-263e-4ad1-967e-059770526381",
101
+ "metadata": {},
102
+ "outputs": [],
103
+ "source": []
104
+ }
105
+ ],
106
+ "metadata": {
107
+ "kernelspec": {
108
+ "display_name": "Deeplearning tf1.15",
109
+ "language": "python",
110
+ "name": "deeplearning_tf115"
111
+ },
112
+ "language_info": {
113
+ "codemirror_mode": {
114
+ "name": "ipython",
115
+ "version": 3
116
+ },
117
+ "file_extension": ".py",
118
+ "mimetype": "text/x-python",
119
+ "name": "python",
120
+ "nbconvert_exporter": "python",
121
+ "pygments_lexer": "ipython3",
122
+ "version": "3.7.10"
123
+ }
124
+ },
125
+ "nbformat": 4,
126
+ "nbformat_minor": 5
127
+ }
the_code/General/Motif_implantation.html ADDED
The diff for this file is too large to render. See raw diff
 
the_code/General/Motif_implantation.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
the_code/General/Sequence_evolution.html ADDED
The diff for this file is too large to render. See raw diff
 
the_code/General/Sequence_evolution.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
the_code/General/data/DeepFlyBrain_data.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:539426217f24e20875458349dafc416d87df0812076ae324b816d6c36cc036d8
3
+ size 554306501
the_code/General/data/DeepMEL2_data.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c7d5f0bb2c5a31d5d49b68ced4d0f0e6c145a16791f8d499a7638fb23e91e4a
3
+ size 440085279
the_code/General/data/KC_regions.fa ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d5bd02465af461311c68bf32890d8b015ddfa53e4cf21620fa22ab4e439c859
3
+ size 3216920
the_code/General/data/MEL_regions.fa ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2acfc770926abdb83c085808e2900abf75855a20e652402d5267f3380e02925c
3
+ size 2047064
the_code/General/models/DeepFlyBrain/DeepFlyBrain_architecture.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"class_name": "Model", "config": {"name": "model_1", "layers": [{"name": "input_1", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 4], "dtype": "float32", "sparse": false, "name": "input_1"}, "inbound_nodes": []}, {"name": "lambda_2", "class_name": "Lambda", "config": {"name": "lambda_2", "trainable": true, "function": ["4wEAAAAAAAAAAQAAAAQAAABDAAAAcw4AAAB0AGoBfABkAWQCjQJTACkDTukBAAAAKQHaBGF4ZXMp\nAtoBS9oHcmV2ZXJzZSkB2gF4qQByBgAAAPqjL2RkbjEvdm9sMS9zdGFnaW5nL2xldXZlbi9zdGdf\nMDAwMDIvbGNiL2l0YXNrL2RlZXBfbGVhcm5pbmcvZGVlcEZMWS9hZHVsdEJyYWluX25ldy9LQ19U\nX0dsaWEvODF0b3BpY3NfMDk3NS90Zl9tb3RpZnNfbWluMDI1X25vZGl2X21wc3QxNl9oaWdoZG9f\nbW9yZWZpbHRlci91dGlscy5wedoIPGxhbWJkYT4RAQAA8wAAAAA=\n", null, null], "function_type": "lambda", "output_shape": null, "output_shape_type": "raw", "arguments": {}}, "inbound_nodes": [[["input_1", 0, 0, {}]]]}, {"name": "lambda_1", "class_name": "Lambda", "config": {"name": "lambda_1", "trainable": true, "function": ["4wEAAAAAAAAAAQAAAAQAAABDAAAAcw4AAAB0AGoBfABkAWQCjQJTACkDTukCAAAAKQHaBGF4ZXMp\nAtoBS9oHcmV2ZXJzZSkB2gF4qQByBgAAAPqjL2RkbjEvdm9sMS9zdGFnaW5nL2xldXZlbi9zdGdf\nMDAwMDIvbGNiL2l0YXNrL2RlZXBfbGVhcm5pbmcvZGVlcEZMWS9hZHVsdEJyYWluX25ldy9LQ19U\nX0dsaWEvODF0b3BpY3NfMDk3NS90Zl9tb3RpZnNfbWluMDI1X25vZGl2X21wc3QxNl9oaWdoZG9f\nbW9yZWZpbHRlci91dGlscy5wedoIPGxhbWJkYT4QAQAA8wAAAAA=\n", null, null], "function_type": "lambda", "output_shape": null, "output_shape_type": "raw", "arguments": {}}, "inbound_nodes": [[["lambda_2", 0, 0, {}]]]}, {"name": "conv1d_1", "class_name": "Conv1D", "config": {"name": "conv1d_1", "trainable": true, "filters": 1024, "kernel_size": [24], "strides": [1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1], "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "RandomUniform", "config": {"minval": -0.05, "maxval": 0.05, "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["input_1", 0, 0, {}]], [["lambda_1", 0, 0, {}]]]}, {"name": "max_pooling1d_1", "class_name": "MaxPooling1D", "config": {"name": "max_pooling1d_1", "trainable": true, "strides": [12], "pool_size": [12], "padding": "valid", "data_format": "channels_last"}, "inbound_nodes": [[["conv1d_1", 0, 0, {}]], [["conv1d_1", 1, 0, {}]]]}, {"name": "dropout_1", "class_name": "Dropout", "config": {"name": "dropout_1", "trainable": true, "rate": 0.5, "noise_shape": null, "seed": null}, "inbound_nodes": [[["max_pooling1d_1", 0, 0, {}]], [["max_pooling1d_1", 1, 0, {}]]]}, {"name": "time_distributed_1", "class_name": "TimeDistributed", "config": {"name": "time_distributed_1", "trainable": true, "layer": {"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "units": 128, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}}, "inbound_nodes": [[["dropout_1", 0, 0, {}]], [["dropout_1", 1, 0, {}]]]}, {"name": "bidirectional_1", "class_name": "Bidirectional", "config": {"name": "bidirectional_1", "trainable": true, "layer": {"class_name": "LSTM", "config": {"name": "lstm_1", "trainable": true, "return_sequences": true, "return_state": false, "go_backwards": false, "stateful": false, "unroll": false, "units": 128, "activation": "tanh", "recurrent_activation": "hard_sigmoid", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "recurrent_initializer": {"class_name": "Orthogonal", "config": {"gain": 1.0, "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "unit_forget_bias": true, "kernel_regularizer": null, "recurrent_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "recurrent_constraint": null, "bias_constraint": null, "dropout": 0.2, "recurrent_dropout": 0.2, "implementation": 1}}, "merge_mode": "concat"}, "inbound_nodes": [[["time_distributed_1", 0, 0, {}]], [["time_distributed_1", 1, 0, {}]]]}, {"name": "dropout_2", "class_name": "Dropout", "config": {"name": "dropout_2", "trainable": true, "rate": 0.5, "noise_shape": null, "seed": null}, "inbound_nodes": [[["bidirectional_1", 0, 0, {}]], [["bidirectional_1", 1, 0, {}]]]}, {"name": "flatten_1", "class_name": "Flatten", "config": {"name": "flatten_1", "trainable": true, "data_format": "channels_last"}, "inbound_nodes": [[["dropout_2", 0, 0, {}]], [["dropout_2", 1, 0, {}]]]}, {"name": "dense_2", "class_name": "Dense", "config": {"name": "dense_2", "trainable": true, "units": 256, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["flatten_1", 0, 0, {}]], [["flatten_1", 1, 0, {}]]]}, {"name": "dropout_3", "class_name": "Dropout", "config": {"name": "dropout_3", "trainable": true, "rate": 0.5, "noise_shape": null, "seed": null}, "inbound_nodes": [[["dense_2", 0, 0, {}]], [["dense_2", 1, 0, {}]]]}, {"name": "concatenate_1", "class_name": "Concatenate", "config": {"name": "concatenate_1", "trainable": true, "axis": 1}, "inbound_nodes": [[["dropout_3", 0, 0, {}], ["dropout_3", 1, 0, {}]]]}, {"name": "dense_3", "class_name": "Dense", "config": {"name": "dense_3", "trainable": true, "units": 81, "activation": "sigmoid", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["concatenate_1", 0, 0, {}]]]}], "input_layers": [["input_1", 0, 0]], "output_layers": [["dense_3", 0, 0]]}, "keras_version": "2.2.4", "backend": "tensorflow"}
the_code/General/models/DeepFlyBrain/DeepFlyBrain_weights.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d1d25f752658cda489dde3a558574cdedf64ca0cf743b9ce113b8d158a6d300
3
+ size 12921600
the_code/General/models/DeepMEL2/DeepMEL2_architecture.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"class_name": "Model", "config": {"name": "model_1", "layers": [{"name": "input_1", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 4], "dtype": "float32", "sparse": false, "name": "input_1"}, "inbound_nodes": []}, {"name": "input_2", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 4], "dtype": "float32", "sparse": false, "name": "input_2"}, "inbound_nodes": []}, {"name": "conv1d_1", "class_name": "Conv1D", "config": {"name": "conv1d_1", "trainable": true, "dtype": "float32", "filters": 300, "kernel_size": [30], "strides": [1], "padding": "valid", "data_format": "channels_last", "dilation_rate": [1], "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "RandomUniform", "config": {"minval": -0.05, "maxval": 0.05, "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["input_1", 0, 0, {}]], [["input_2", 0, 0, {}]]]}, {"name": "max_pooling1d_1", "class_name": "MaxPooling1D", "config": {"name": "max_pooling1d_1", "trainable": true, "dtype": "float32", "strides": [5], "pool_size": [15], "padding": "valid", "data_format": "channels_last"}, "inbound_nodes": [[["conv1d_1", 0, 0, {}]], [["conv1d_1", 1, 0, {}]]]}, {"name": "dropout_1", "class_name": "Dropout", "config": {"name": "dropout_1", "trainable": true, "dtype": "float32", "rate": 0.2, "noise_shape": null, "seed": null}, "inbound_nodes": [[["max_pooling1d_1", 0, 0, {}]], [["max_pooling1d_1", 1, 0, {}]]]}, {"name": "time_distributed_1", "class_name": "TimeDistributed", "config": {"name": "time_distributed_1", "trainable": true, "dtype": "float32", "layer": {"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "dtype": "float32", "units": 128, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}}, "inbound_nodes": [[["dropout_1", 0, 0, {}]], [["dropout_1", 1, 0, {}]]]}, {"name": "bidirectional_1", "class_name": "Bidirectional", "config": {"name": "bidirectional_1", "trainable": true, "dtype": "float32", "layer": {"class_name": "LSTM", "config": {"name": "lstm_1", "trainable": true, "dtype": "float32", "return_sequences": true, "return_state": false, "go_backwards": false, "stateful": false, "unroll": false, "units": 128, "activation": "tanh", "recurrent_activation": "sigmoid", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "recurrent_initializer": {"class_name": "Orthogonal", "config": {"gain": 1.0, "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "unit_forget_bias": true, "kernel_regularizer": null, "recurrent_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "recurrent_constraint": null, "bias_constraint": null, "dropout": 0.1, "recurrent_dropout": 0.1, "implementation": 2}}, "merge_mode": "concat"}, "inbound_nodes": [[["time_distributed_1", 0, 0, {}]], [["time_distributed_1", 1, 0, {}]]]}, {"name": "dropout_2", "class_name": "Dropout", "config": {"name": "dropout_2", "trainable": true, "dtype": "float32", "rate": 0.2, "noise_shape": null, "seed": null}, "inbound_nodes": [[["bidirectional_1", 0, 0, {}]], [["bidirectional_1", 1, 0, {}]]]}, {"name": "flatten_1", "class_name": "Flatten", "config": {"name": "flatten_1", "trainable": true, "dtype": "float32", "data_format": "channels_last"}, "inbound_nodes": [[["dropout_2", 0, 0, {}]], [["dropout_2", 1, 0, {}]]]}, {"name": "dense_2", "class_name": "Dense", "config": {"name": "dense_2", "trainable": true, "dtype": "float32", "units": 256, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["flatten_1", 0, 0, {}]], [["flatten_1", 1, 0, {}]]]}, {"name": "dropout_3", "class_name": "Dropout", "config": {"name": "dropout_3", "trainable": true, "dtype": "float32", "rate": 0.4, "noise_shape": null, "seed": null}, "inbound_nodes": [[["dense_2", 0, 0, {}]], [["dense_2", 1, 0, {}]]]}, {"name": "dense_3", "class_name": "Dense", "config": {"name": "dense_3", "trainable": true, "dtype": "float32", "units": 47, "activation": "sigmoid", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["dropout_3", 0, 0, {}]], [["dropout_3", 1, 0, {}]]]}, {"name": "average_1", "class_name": "Average", "config": {"name": "average_1", "trainable": true, "dtype": "float32"}, "inbound_nodes": [[["dense_3", 0, 0, {}], ["dense_3", 1, 0, {}]]]}], "input_layers": [["input_1", 0, 0], ["input_2", 0, 0]], "output_layers": [["average_1", 0, 0]]}, "keras_version": "2.3.1", "backend": "tensorflow"}
the_code/General/models/DeepMEL2/DeepMEL2_weights.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:636b0f1b7a54af4a1f07a46aa6d5c814aae9daad84e95c98974656abc81481b7
3
+ size 25550328
the_code/General/models/KC_GAN/KC_GAN_disc_architecture.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"class_name": "Model", "config": {"name": "model_13", "layers": [{"name": "input_14", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 128], "dtype": "float32", "sparse": false, "name": "input_14"}, "inbound_nodes": []}, {"name": "input_13", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 4], "dtype": "float32", "sparse": false, "name": "input_13"}, "inbound_nodes": []}, {"name": "model_6", "class_name": "Model", "config": {"name": "model_6", "layers": [{"name": "input_6", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 128], "dtype": "float32", "sparse": false, "name": "input_6"}, "inbound_nodes": []}, {"name": "sequential_1", "class_name": "Sequential", "config": {"name": "sequential_1", "layers": [{"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "batch_input_shape": [null, 128], "dtype": "float32", "units": 64000, "activation": "elu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Reshape", "config": {"name": "reshape_1", "trainable": true, "target_shape": [500, 128]}}, {"class_name": "Model", "config": {"name": "model_1", "layers": [{"name": "input_1", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_1"}, "inbound_nodes": []}, {"name": "activation_2", "class_name": "Activation", "config": {"name": "activation_2", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_1", 0, 0, {}]]]}, {"name": "conv1d_2", "class_name": "Conv1D", "config": {"name": "conv1d_2", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_2", 0, 0, {}]]]}, {"name": "add_1", "class_name": "Add", "config": {"name": "add_1", "trainable": true}, "inbound_nodes": [[["input_1", 0, 0, {}], ["conv1d_2", 0, 0, {}]]]}], "input_layers": [["input_1", 0, 0]], "output_layers": [["add_1", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_2", "layers": [{"name": "input_2", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_2"}, "inbound_nodes": []}, {"name": "activation_4", "class_name": "Activation", "config": {"name": "activation_4", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_2", 0, 0, {}]]]}, {"name": "conv1d_4", "class_name": "Conv1D", "config": {"name": "conv1d_4", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_4", 0, 0, {}]]]}, {"name": "add_2", "class_name": "Add", "config": {"name": "add_2", "trainable": true}, "inbound_nodes": [[["input_2", 0, 0, {}], ["conv1d_4", 0, 0, {}]]]}], "input_layers": [["input_2", 0, 0]], "output_layers": [["add_2", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_3", "layers": [{"name": "input_3", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_3"}, "inbound_nodes": []}, {"name": "activation_6", "class_name": "Activation", "config": {"name": "activation_6", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_3", 0, 0, {}]]]}, {"name": "conv1d_6", "class_name": "Conv1D", "config": {"name": "conv1d_6", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_6", 0, 0, {}]]]}, {"name": "add_3", "class_name": "Add", "config": {"name": "add_3", "trainable": true}, "inbound_nodes": [[["input_3", 0, 0, {}], ["conv1d_6", 0, 0, {}]]]}], "input_layers": [["input_3", 0, 0]], "output_layers": [["add_3", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_4", "layers": [{"name": "input_4", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_4"}, "inbound_nodes": []}, {"name": "activation_8", "class_name": "Activation", "config": {"name": "activation_8", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_4", 0, 0, {}]]]}, {"name": "conv1d_8", "class_name": "Conv1D", "config": {"name": "conv1d_8", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_8", 0, 0, {}]]]}, {"name": "add_4", "class_name": "Add", "config": {"name": "add_4", "trainable": true}, "inbound_nodes": [[["input_4", 0, 0, {}], ["conv1d_8", 0, 0, {}]]]}], "input_layers": [["input_4", 0, 0]], "output_layers": [["add_4", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_5", "layers": [{"name": "input_5", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_5"}, "inbound_nodes": []}, {"name": "activation_10", "class_name": "Activation", "config": {"name": "activation_10", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_5", 0, 0, {}]]]}, {"name": "conv1d_10", "class_name": "Conv1D", "config": {"name": "conv1d_10", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_10", 0, 0, {}]]]}, {"name": "add_5", "class_name": "Add", "config": {"name": "add_5", "trainable": true}, "inbound_nodes": [[["input_5", 0, 0, {}], ["conv1d_10", 0, 0, {}]]]}], "input_layers": [["input_5", 0, 0]], "output_layers": [["add_5", 0, 0]]}}, {"class_name": "Conv1D", "config": {"name": "conv1d_11", "trainable": true, "filters": 4, "kernel_size": [1], "strides": [1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Activation", "config": {"name": "activation_11", "trainable": true, "activation": "softmax"}}]}, "inbound_nodes": [[["input_6", 0, 0, {}]]]}], "input_layers": [["input_6", 0, 0]], "output_layers": [["sequential_1", 1, 0]]}, "inbound_nodes": [[["input_14", 0, 0, {}]]]}, {"name": "random_weighted_average_1", "class_name": "RandomWeightedAverage", "config": {"name": "random_weighted_average_1", "trainable": true}, "inbound_nodes": [[["input_13", 0, 0, {}], ["model_6", 1, 0, {}]]]}, {"name": "model_12", "class_name": "Model", "config": {"name": "model_12", "layers": [{"name": "input_12", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 4], "dtype": "float32", "sparse": false, "name": "input_12"}, "inbound_nodes": []}, {"name": "sequential_2", "class_name": "Sequential", "config": {"name": "sequential_2", "layers": [{"class_name": "Conv1D", "config": {"name": "conv1d_12", "trainable": true, "batch_input_shape": [null, 500, 4], "dtype": "float32", "filters": 128, "kernel_size": [1], "strides": [1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Model", "config": {"name": "model_7", "layers": [{"name": "input_7", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_7"}, "inbound_nodes": []}, {"name": "activation_13", "class_name": "Activation", "config": {"name": "activation_13", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_7", 0, 0, {}]]]}, {"name": "conv1d_14", "class_name": "Conv1D", "config": {"name": "conv1d_14", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_13", 0, 0, {}]]]}, {"name": "add_6", "class_name": "Add", "config": {"name": "add_6", "trainable": true}, "inbound_nodes": [[["input_7", 0, 0, {}], ["conv1d_14", 0, 0, {}]]]}], "input_layers": [["input_7", 0, 0]], "output_layers": [["add_6", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_8", "layers": [{"name": "input_8", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_8"}, "inbound_nodes": []}, {"name": "activation_15", "class_name": "Activation", "config": {"name": "activation_15", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_8", 0, 0, {}]]]}, {"name": "conv1d_16", "class_name": "Conv1D", "config": {"name": "conv1d_16", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_15", 0, 0, {}]]]}, {"name": "add_7", "class_name": "Add", "config": {"name": "add_7", "trainable": true}, "inbound_nodes": [[["input_8", 0, 0, {}], ["conv1d_16", 0, 0, {}]]]}], "input_layers": [["input_8", 0, 0]], "output_layers": [["add_7", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_9", "layers": [{"name": "input_9", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_9"}, "inbound_nodes": []}, {"name": "activation_17", "class_name": "Activation", "config": {"name": "activation_17", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_9", 0, 0, {}]]]}, {"name": "conv1d_18", "class_name": "Conv1D", "config": {"name": "conv1d_18", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_17", 0, 0, {}]]]}, {"name": "add_8", "class_name": "Add", "config": {"name": "add_8", "trainable": true}, "inbound_nodes": [[["input_9", 0, 0, {}], ["conv1d_18", 0, 0, {}]]]}], "input_layers": [["input_9", 0, 0]], "output_layers": [["add_8", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_10", "layers": [{"name": "input_10", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_10"}, "inbound_nodes": []}, {"name": "activation_19", "class_name": "Activation", "config": {"name": "activation_19", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_10", 0, 0, {}]]]}, {"name": "conv1d_20", "class_name": "Conv1D", "config": {"name": "conv1d_20", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_19", 0, 0, {}]]]}, {"name": "add_9", "class_name": "Add", "config": {"name": "add_9", "trainable": true}, "inbound_nodes": [[["input_10", 0, 0, {}], ["conv1d_20", 0, 0, {}]]]}], "input_layers": [["input_10", 0, 0]], "output_layers": [["add_9", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_11", "layers": [{"name": "input_11", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_11"}, "inbound_nodes": []}, {"name": "activation_21", "class_name": "Activation", "config": {"name": "activation_21", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_11", 0, 0, {}]]]}, {"name": "conv1d_22", "class_name": "Conv1D", "config": {"name": "conv1d_22", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_21", 0, 0, {}]]]}, {"name": "add_10", "class_name": "Add", "config": {"name": "add_10", "trainable": true}, "inbound_nodes": [[["input_11", 0, 0, {}], ["conv1d_22", 0, 0, {}]]]}], "input_layers": [["input_11", 0, 0]], "output_layers": [["add_10", 0, 0]]}}, {"class_name": "Flatten", "config": {"name": "flatten_1", "trainable": true, "data_format": "channels_last"}}, {"class_name": "Dense", "config": {"name": "dense_2", "trainable": true, "units": 1, "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}]}, "inbound_nodes": [[["input_12", 0, 0, {}]]]}], "input_layers": [["input_12", 0, 0]], "output_layers": [["sequential_2", 1, 0]]}, "inbound_nodes": [[["model_6", 1, 0, {}]], [["input_13", 0, 0, {}]], [["random_weighted_average_1", 0, 0, {}]]]}], "input_layers": [["input_13", 0, 0], ["input_14", 0, 0]], "output_layers": [["model_12", 2, 0], ["model_12", 1, 0], ["model_12", 3, 0]]}, "keras_version": "2.2.4", "backend": "tensorflow"}
the_code/General/models/KC_GAN/KC_GAN_disc_iter210k_weights.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:086fbe9665607a29675a61acc4efd0f85094cda4eedef42e00c8040bbf454937
3
+ size 36600388
the_code/General/models/KC_GAN/KC_GAN_gen_architecture.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"class_name": "Model", "config": {"name": "model_14", "layers": [{"name": "input_15", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 128], "dtype": "float32", "sparse": false, "name": "input_15"}, "inbound_nodes": []}, {"name": "model_6", "class_name": "Model", "config": {"name": "model_6", "layers": [{"name": "input_6", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 128], "dtype": "float32", "sparse": false, "name": "input_6"}, "inbound_nodes": []}, {"name": "sequential_1", "class_name": "Sequential", "config": {"name": "sequential_1", "layers": [{"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "batch_input_shape": [null, 128], "dtype": "float32", "units": 64000, "activation": "elu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Reshape", "config": {"name": "reshape_1", "trainable": true, "target_shape": [500, 128]}}, {"class_name": "Model", "config": {"name": "model_1", "layers": [{"name": "input_1", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_1"}, "inbound_nodes": []}, {"name": "activation_2", "class_name": "Activation", "config": {"name": "activation_2", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_1", 0, 0, {}]]]}, {"name": "conv1d_2", "class_name": "Conv1D", "config": {"name": "conv1d_2", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_2", 0, 0, {}]]]}, {"name": "add_1", "class_name": "Add", "config": {"name": "add_1", "trainable": true}, "inbound_nodes": [[["input_1", 0, 0, {}], ["conv1d_2", 0, 0, {}]]]}], "input_layers": [["input_1", 0, 0]], "output_layers": [["add_1", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_2", "layers": [{"name": "input_2", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_2"}, "inbound_nodes": []}, {"name": "activation_4", "class_name": "Activation", "config": {"name": "activation_4", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_2", 0, 0, {}]]]}, {"name": "conv1d_4", "class_name": "Conv1D", "config": {"name": "conv1d_4", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_4", 0, 0, {}]]]}, {"name": "add_2", "class_name": "Add", "config": {"name": "add_2", "trainable": true}, "inbound_nodes": [[["input_2", 0, 0, {}], ["conv1d_4", 0, 0, {}]]]}], "input_layers": [["input_2", 0, 0]], "output_layers": [["add_2", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_3", "layers": [{"name": "input_3", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_3"}, "inbound_nodes": []}, {"name": "activation_6", "class_name": "Activation", "config": {"name": "activation_6", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_3", 0, 0, {}]]]}, {"name": "conv1d_6", "class_name": "Conv1D", "config": {"name": "conv1d_6", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_6", 0, 0, {}]]]}, {"name": "add_3", "class_name": "Add", "config": {"name": "add_3", "trainable": true}, "inbound_nodes": [[["input_3", 0, 0, {}], ["conv1d_6", 0, 0, {}]]]}], "input_layers": [["input_3", 0, 0]], "output_layers": [["add_3", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_4", "layers": [{"name": "input_4", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_4"}, "inbound_nodes": []}, {"name": "activation_8", "class_name": "Activation", "config": {"name": "activation_8", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_4", 0, 0, {}]]]}, {"name": "conv1d_8", "class_name": "Conv1D", "config": {"name": "conv1d_8", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_8", 0, 0, {}]]]}, {"name": "add_4", "class_name": "Add", "config": {"name": "add_4", "trainable": true}, "inbound_nodes": [[["input_4", 0, 0, {}], ["conv1d_8", 0, 0, {}]]]}], "input_layers": [["input_4", 0, 0]], "output_layers": [["add_4", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_5", "layers": [{"name": "input_5", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_5"}, "inbound_nodes": []}, {"name": "activation_10", "class_name": "Activation", "config": {"name": "activation_10", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_5", 0, 0, {}]]]}, {"name": "conv1d_10", "class_name": "Conv1D", "config": {"name": "conv1d_10", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_10", 0, 0, {}]]]}, {"name": "add_5", "class_name": "Add", "config": {"name": "add_5", "trainable": true}, "inbound_nodes": [[["input_5", 0, 0, {}], ["conv1d_10", 0, 0, {}]]]}], "input_layers": [["input_5", 0, 0]], "output_layers": [["add_5", 0, 0]]}}, {"class_name": "Conv1D", "config": {"name": "conv1d_11", "trainable": true, "filters": 4, "kernel_size": [1], "strides": [1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Activation", "config": {"name": "activation_11", "trainable": true, "activation": "softmax"}}]}, "inbound_nodes": [[["input_6", 0, 0, {}]]]}], "input_layers": [["input_6", 0, 0]], "output_layers": [["sequential_1", 1, 0]]}, "inbound_nodes": [[["input_15", 0, 0, {}]]]}, {"name": "model_12", "class_name": "Model", "config": {"name": "model_12", "layers": [{"name": "input_12", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 4], "dtype": "float32", "sparse": false, "name": "input_12"}, "inbound_nodes": []}, {"name": "sequential_2", "class_name": "Sequential", "config": {"name": "sequential_2", "layers": [{"class_name": "Conv1D", "config": {"name": "conv1d_12", "trainable": true, "batch_input_shape": [null, 500, 4], "dtype": "float32", "filters": 128, "kernel_size": [1], "strides": [1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Model", "config": {"name": "model_7", "layers": [{"name": "input_7", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_7"}, "inbound_nodes": []}, {"name": "activation_13", "class_name": "Activation", "config": {"name": "activation_13", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_7", 0, 0, {}]]]}, {"name": "conv1d_14", "class_name": "Conv1D", "config": {"name": "conv1d_14", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_13", 0, 0, {}]]]}, {"name": "add_6", "class_name": "Add", "config": {"name": "add_6", "trainable": true}, "inbound_nodes": [[["input_7", 0, 0, {}], ["conv1d_14", 0, 0, {}]]]}], "input_layers": [["input_7", 0, 0]], "output_layers": [["add_6", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_8", "layers": [{"name": "input_8", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_8"}, "inbound_nodes": []}, {"name": "activation_15", "class_name": "Activation", "config": {"name": "activation_15", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_8", 0, 0, {}]]]}, {"name": "conv1d_16", "class_name": "Conv1D", "config": {"name": "conv1d_16", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_15", 0, 0, {}]]]}, {"name": "add_7", "class_name": "Add", "config": {"name": "add_7", "trainable": true}, "inbound_nodes": [[["input_8", 0, 0, {}], ["conv1d_16", 0, 0, {}]]]}], "input_layers": [["input_8", 0, 0]], "output_layers": [["add_7", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_9", "layers": [{"name": "input_9", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_9"}, "inbound_nodes": []}, {"name": "activation_17", "class_name": "Activation", "config": {"name": "activation_17", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_9", 0, 0, {}]]]}, {"name": "conv1d_18", "class_name": "Conv1D", "config": {"name": "conv1d_18", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_17", 0, 0, {}]]]}, {"name": "add_8", "class_name": "Add", "config": {"name": "add_8", "trainable": true}, "inbound_nodes": [[["input_9", 0, 0, {}], ["conv1d_18", 0, 0, {}]]]}], "input_layers": [["input_9", 0, 0]], "output_layers": [["add_8", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_10", "layers": [{"name": "input_10", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_10"}, "inbound_nodes": []}, {"name": "activation_19", "class_name": "Activation", "config": {"name": "activation_19", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_10", 0, 0, {}]]]}, {"name": "conv1d_20", "class_name": "Conv1D", "config": {"name": "conv1d_20", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_19", 0, 0, {}]]]}, {"name": "add_9", "class_name": "Add", "config": {"name": "add_9", "trainable": true}, "inbound_nodes": [[["input_10", 0, 0, {}], ["conv1d_20", 0, 0, {}]]]}], "input_layers": [["input_10", 0, 0]], "output_layers": [["add_9", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_11", "layers": [{"name": "input_11", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_11"}, "inbound_nodes": []}, {"name": "activation_21", "class_name": "Activation", "config": {"name": "activation_21", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_11", 0, 0, {}]]]}, {"name": "conv1d_22", "class_name": "Conv1D", "config": {"name": "conv1d_22", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "data_format": "channels_last", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_21", 0, 0, {}]]]}, {"name": "add_10", "class_name": "Add", "config": {"name": "add_10", "trainable": true}, "inbound_nodes": [[["input_11", 0, 0, {}], ["conv1d_22", 0, 0, {}]]]}], "input_layers": [["input_11", 0, 0]], "output_layers": [["add_10", 0, 0]]}}, {"class_name": "Flatten", "config": {"name": "flatten_1", "trainable": true, "data_format": "channels_last"}}, {"class_name": "Dense", "config": {"name": "dense_2", "trainable": true, "units": 1, "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}]}, "inbound_nodes": [[["input_12", 0, 0, {}]]]}], "input_layers": [["input_12", 0, 0]], "output_layers": [["sequential_2", 1, 0]]}, "inbound_nodes": [[["model_6", 1, 0, {}]]]}], "input_layers": [["input_15", 0, 0]], "output_layers": [["model_12", 1, 0]]}, "keras_version": "2.2.4", "backend": "tensorflow"}
the_code/General/models/KC_GAN/KC_GAN_gen_iter210k_weights.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8694f169e27c6c055ae69aa01efd2d8561d0f326acdf256927dbd0c580f7daa0
3
+ size 36598508
the_code/General/models/MEL_GAN/MEL_GAN_disc_architecture.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"class_name": "Model", "config": {"name": "model_13", "layers": [{"name": "input_14", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 128], "dtype": "float32", "sparse": false, "name": "input_14"}, "inbound_nodes": []}, {"name": "input_13", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 4], "dtype": "float32", "sparse": false, "name": "input_13"}, "inbound_nodes": []}, {"name": "model_6", "class_name": "Model", "config": {"name": "model_6", "layers": [{"name": "input_6", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 128], "dtype": "float32", "sparse": false, "name": "input_6"}, "inbound_nodes": []}, {"name": "sequential_1", "class_name": "Sequential", "config": [{"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "batch_input_shape": [null, 128], "dtype": "float32", "units": 64000, "activation": "elu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Reshape", "config": {"name": "reshape_1", "trainable": true, "target_shape": [500, 128]}}, {"class_name": "Model", "config": {"name": "model_1", "layers": [{"name": "input_1", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_1"}, "inbound_nodes": []}, {"name": "activation_2", "class_name": "Activation", "config": {"name": "activation_2", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_1", 0, 0, {}]]]}, {"name": "conv1d_2", "class_name": "Conv1D", "config": {"name": "conv1d_2", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_2", 0, 0, {}]]]}, {"name": "add_1", "class_name": "Add", "config": {"name": "add_1", "trainable": true}, "inbound_nodes": [[["input_1", 0, 0, {}], ["conv1d_2", 0, 0, {}]]]}], "input_layers": [["input_1", 0, 0]], "output_layers": [["add_1", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_2", "layers": [{"name": "input_2", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_2"}, "inbound_nodes": []}, {"name": "activation_4", "class_name": "Activation", "config": {"name": "activation_4", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_2", 0, 0, {}]]]}, {"name": "conv1d_4", "class_name": "Conv1D", "config": {"name": "conv1d_4", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_4", 0, 0, {}]]]}, {"name": "add_2", "class_name": "Add", "config": {"name": "add_2", "trainable": true}, "inbound_nodes": [[["input_2", 0, 0, {}], ["conv1d_4", 0, 0, {}]]]}], "input_layers": [["input_2", 0, 0]], "output_layers": [["add_2", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_3", "layers": [{"name": "input_3", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_3"}, "inbound_nodes": []}, {"name": "activation_6", "class_name": "Activation", "config": {"name": "activation_6", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_3", 0, 0, {}]]]}, {"name": "conv1d_6", "class_name": "Conv1D", "config": {"name": "conv1d_6", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_6", 0, 0, {}]]]}, {"name": "add_3", "class_name": "Add", "config": {"name": "add_3", "trainable": true}, "inbound_nodes": [[["input_3", 0, 0, {}], ["conv1d_6", 0, 0, {}]]]}], "input_layers": [["input_3", 0, 0]], "output_layers": [["add_3", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_4", "layers": [{"name": "input_4", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_4"}, "inbound_nodes": []}, {"name": "activation_8", "class_name": "Activation", "config": {"name": "activation_8", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_4", 0, 0, {}]]]}, {"name": "conv1d_8", "class_name": "Conv1D", "config": {"name": "conv1d_8", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_8", 0, 0, {}]]]}, {"name": "add_4", "class_name": "Add", "config": {"name": "add_4", "trainable": true}, "inbound_nodes": [[["input_4", 0, 0, {}], ["conv1d_8", 0, 0, {}]]]}], "input_layers": [["input_4", 0, 0]], "output_layers": [["add_4", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_5", "layers": [{"name": "input_5", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_5"}, "inbound_nodes": []}, {"name": "activation_10", "class_name": "Activation", "config": {"name": "activation_10", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_5", 0, 0, {}]]]}, {"name": "conv1d_10", "class_name": "Conv1D", "config": {"name": "conv1d_10", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_10", 0, 0, {}]]]}, {"name": "add_5", "class_name": "Add", "config": {"name": "add_5", "trainable": true}, "inbound_nodes": [[["input_5", 0, 0, {}], ["conv1d_10", 0, 0, {}]]]}], "input_layers": [["input_5", 0, 0]], "output_layers": [["add_5", 0, 0]]}}, {"class_name": "Conv1D", "config": {"name": "conv1d_11", "trainable": true, "filters": 4, "kernel_size": [1], "strides": [1], "padding": "same", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Activation", "config": {"name": "activation_11", "trainable": true, "activation": "softmax"}}], "inbound_nodes": [[["input_6", 0, 0, {}]]]}], "input_layers": [["input_6", 0, 0]], "output_layers": [["sequential_1", 1, 0]]}, "inbound_nodes": [[["input_14", 0, 0, {}]]]}, {"name": "random_weighted_average_1", "class_name": "RandomWeightedAverage", "config": {"name": "random_weighted_average_1", "trainable": true}, "inbound_nodes": [[["input_13", 0, 0, {}], ["model_6", 1, 0, {}]]]}, {"name": "model_12", "class_name": "Model", "config": {"name": "model_12", "layers": [{"name": "input_12", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 4], "dtype": "float32", "sparse": false, "name": "input_12"}, "inbound_nodes": []}, {"name": "sequential_2", "class_name": "Sequential", "config": [{"class_name": "Conv1D", "config": {"name": "conv1d_12", "trainable": true, "batch_input_shape": [null, 500, 4], "dtype": "float32", "filters": 128, "kernel_size": [1], "strides": [1], "padding": "same", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Model", "config": {"name": "model_7", "layers": [{"name": "input_7", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_7"}, "inbound_nodes": []}, {"name": "activation_13", "class_name": "Activation", "config": {"name": "activation_13", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_7", 0, 0, {}]]]}, {"name": "conv1d_14", "class_name": "Conv1D", "config": {"name": "conv1d_14", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_13", 0, 0, {}]]]}, {"name": "add_6", "class_name": "Add", "config": {"name": "add_6", "trainable": true}, "inbound_nodes": [[["input_7", 0, 0, {}], ["conv1d_14", 0, 0, {}]]]}], "input_layers": [["input_7", 0, 0]], "output_layers": [["add_6", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_8", "layers": [{"name": "input_8", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_8"}, "inbound_nodes": []}, {"name": "activation_15", "class_name": "Activation", "config": {"name": "activation_15", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_8", 0, 0, {}]]]}, {"name": "conv1d_16", "class_name": "Conv1D", "config": {"name": "conv1d_16", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_15", 0, 0, {}]]]}, {"name": "add_7", "class_name": "Add", "config": {"name": "add_7", "trainable": true}, "inbound_nodes": [[["input_8", 0, 0, {}], ["conv1d_16", 0, 0, {}]]]}], "input_layers": [["input_8", 0, 0]], "output_layers": [["add_7", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_9", "layers": [{"name": "input_9", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_9"}, "inbound_nodes": []}, {"name": "activation_17", "class_name": "Activation", "config": {"name": "activation_17", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_9", 0, 0, {}]]]}, {"name": "conv1d_18", "class_name": "Conv1D", "config": {"name": "conv1d_18", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_17", 0, 0, {}]]]}, {"name": "add_8", "class_name": "Add", "config": {"name": "add_8", "trainable": true}, "inbound_nodes": [[["input_9", 0, 0, {}], ["conv1d_18", 0, 0, {}]]]}], "input_layers": [["input_9", 0, 0]], "output_layers": [["add_8", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_10", "layers": [{"name": "input_10", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_10"}, "inbound_nodes": []}, {"name": "activation_19", "class_name": "Activation", "config": {"name": "activation_19", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_10", 0, 0, {}]]]}, {"name": "conv1d_20", "class_name": "Conv1D", "config": {"name": "conv1d_20", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_19", 0, 0, {}]]]}, {"name": "add_9", "class_name": "Add", "config": {"name": "add_9", "trainable": true}, "inbound_nodes": [[["input_10", 0, 0, {}], ["conv1d_20", 0, 0, {}]]]}], "input_layers": [["input_10", 0, 0]], "output_layers": [["add_9", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_11", "layers": [{"name": "input_11", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_11"}, "inbound_nodes": []}, {"name": "activation_21", "class_name": "Activation", "config": {"name": "activation_21", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_11", 0, 0, {}]]]}, {"name": "conv1d_22", "class_name": "Conv1D", "config": {"name": "conv1d_22", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_21", 0, 0, {}]]]}, {"name": "add_10", "class_name": "Add", "config": {"name": "add_10", "trainable": true}, "inbound_nodes": [[["input_11", 0, 0, {}], ["conv1d_22", 0, 0, {}]]]}], "input_layers": [["input_11", 0, 0]], "output_layers": [["add_10", 0, 0]]}}, {"class_name": "Flatten", "config": {"name": "flatten_1", "trainable": true}}, {"class_name": "Dense", "config": {"name": "dense_2", "trainable": true, "units": 1, "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}], "inbound_nodes": [[["input_12", 0, 0, {}]]]}], "input_layers": [["input_12", 0, 0]], "output_layers": [["sequential_2", 1, 0]]}, "inbound_nodes": [[["model_6", 1, 0, {}]], [["input_13", 0, 0, {}]], [["random_weighted_average_1", 0, 0, {}]]]}], "input_layers": [["input_13", 0, 0], ["input_14", 0, 0]], "output_layers": [["model_12", 2, 0], ["model_12", 1, 0], ["model_12", 3, 0]]}, "keras_version": "2.1.5", "backend": "tensorflow"}
the_code/General/models/MEL_GAN/MEL_GAN_disc_iter160k_weights.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8e830f931c8ba9819bfc6c8681f05ca48aaad3ed96bad0d29f9ff02e1248730
3
+ size 36600388
the_code/General/models/MEL_GAN/MEL_GAN_gen_architecture.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"class_name": "Model", "config": {"name": "model_14", "layers": [{"name": "input_15", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 128], "dtype": "float32", "sparse": false, "name": "input_15"}, "inbound_nodes": []}, {"name": "model_6", "class_name": "Model", "config": {"name": "model_6", "layers": [{"name": "input_6", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 128], "dtype": "float32", "sparse": false, "name": "input_6"}, "inbound_nodes": []}, {"name": "sequential_1", "class_name": "Sequential", "config": [{"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "batch_input_shape": [null, 128], "dtype": "float32", "units": 64000, "activation": "elu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Reshape", "config": {"name": "reshape_1", "trainable": true, "target_shape": [500, 128]}}, {"class_name": "Model", "config": {"name": "model_1", "layers": [{"name": "input_1", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_1"}, "inbound_nodes": []}, {"name": "activation_2", "class_name": "Activation", "config": {"name": "activation_2", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_1", 0, 0, {}]]]}, {"name": "conv1d_2", "class_name": "Conv1D", "config": {"name": "conv1d_2", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_2", 0, 0, {}]]]}, {"name": "add_1", "class_name": "Add", "config": {"name": "add_1", "trainable": true}, "inbound_nodes": [[["input_1", 0, 0, {}], ["conv1d_2", 0, 0, {}]]]}], "input_layers": [["input_1", 0, 0]], "output_layers": [["add_1", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_2", "layers": [{"name": "input_2", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_2"}, "inbound_nodes": []}, {"name": "activation_4", "class_name": "Activation", "config": {"name": "activation_4", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_2", 0, 0, {}]]]}, {"name": "conv1d_4", "class_name": "Conv1D", "config": {"name": "conv1d_4", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_4", 0, 0, {}]]]}, {"name": "add_2", "class_name": "Add", "config": {"name": "add_2", "trainable": true}, "inbound_nodes": [[["input_2", 0, 0, {}], ["conv1d_4", 0, 0, {}]]]}], "input_layers": [["input_2", 0, 0]], "output_layers": [["add_2", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_3", "layers": [{"name": "input_3", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_3"}, "inbound_nodes": []}, {"name": "activation_6", "class_name": "Activation", "config": {"name": "activation_6", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_3", 0, 0, {}]]]}, {"name": "conv1d_6", "class_name": "Conv1D", "config": {"name": "conv1d_6", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_6", 0, 0, {}]]]}, {"name": "add_3", "class_name": "Add", "config": {"name": "add_3", "trainable": true}, "inbound_nodes": [[["input_3", 0, 0, {}], ["conv1d_6", 0, 0, {}]]]}], "input_layers": [["input_3", 0, 0]], "output_layers": [["add_3", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_4", "layers": [{"name": "input_4", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_4"}, "inbound_nodes": []}, {"name": "activation_8", "class_name": "Activation", "config": {"name": "activation_8", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_4", 0, 0, {}]]]}, {"name": "conv1d_8", "class_name": "Conv1D", "config": {"name": "conv1d_8", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_8", 0, 0, {}]]]}, {"name": "add_4", "class_name": "Add", "config": {"name": "add_4", "trainable": true}, "inbound_nodes": [[["input_4", 0, 0, {}], ["conv1d_8", 0, 0, {}]]]}], "input_layers": [["input_4", 0, 0]], "output_layers": [["add_4", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_5", "layers": [{"name": "input_5", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_5"}, "inbound_nodes": []}, {"name": "activation_10", "class_name": "Activation", "config": {"name": "activation_10", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_5", 0, 0, {}]]]}, {"name": "conv1d_10", "class_name": "Conv1D", "config": {"name": "conv1d_10", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_10", 0, 0, {}]]]}, {"name": "add_5", "class_name": "Add", "config": {"name": "add_5", "trainable": true}, "inbound_nodes": [[["input_5", 0, 0, {}], ["conv1d_10", 0, 0, {}]]]}], "input_layers": [["input_5", 0, 0]], "output_layers": [["add_5", 0, 0]]}}, {"class_name": "Conv1D", "config": {"name": "conv1d_11", "trainable": true, "filters": 4, "kernel_size": [1], "strides": [1], "padding": "same", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Activation", "config": {"name": "activation_11", "trainable": true, "activation": "softmax"}}], "inbound_nodes": [[["input_6", 0, 0, {}]]]}], "input_layers": [["input_6", 0, 0]], "output_layers": [["sequential_1", 1, 0]]}, "inbound_nodes": [[["input_15", 0, 0, {}]]]}, {"name": "model_12", "class_name": "Model", "config": {"name": "model_12", "layers": [{"name": "input_12", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 4], "dtype": "float32", "sparse": false, "name": "input_12"}, "inbound_nodes": []}, {"name": "sequential_2", "class_name": "Sequential", "config": [{"class_name": "Conv1D", "config": {"name": "conv1d_12", "trainable": true, "batch_input_shape": [null, 500, 4], "dtype": "float32", "filters": 128, "kernel_size": [1], "strides": [1], "padding": "same", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Model", "config": {"name": "model_7", "layers": [{"name": "input_7", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_7"}, "inbound_nodes": []}, {"name": "activation_13", "class_name": "Activation", "config": {"name": "activation_13", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_7", 0, 0, {}]]]}, {"name": "conv1d_14", "class_name": "Conv1D", "config": {"name": "conv1d_14", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_13", 0, 0, {}]]]}, {"name": "add_6", "class_name": "Add", "config": {"name": "add_6", "trainable": true}, "inbound_nodes": [[["input_7", 0, 0, {}], ["conv1d_14", 0, 0, {}]]]}], "input_layers": [["input_7", 0, 0]], "output_layers": [["add_6", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_8", "layers": [{"name": "input_8", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_8"}, "inbound_nodes": []}, {"name": "activation_15", "class_name": "Activation", "config": {"name": "activation_15", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_8", 0, 0, {}]]]}, {"name": "conv1d_16", "class_name": "Conv1D", "config": {"name": "conv1d_16", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_15", 0, 0, {}]]]}, {"name": "add_7", "class_name": "Add", "config": {"name": "add_7", "trainable": true}, "inbound_nodes": [[["input_8", 0, 0, {}], ["conv1d_16", 0, 0, {}]]]}], "input_layers": [["input_8", 0, 0]], "output_layers": [["add_7", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_9", "layers": [{"name": "input_9", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_9"}, "inbound_nodes": []}, {"name": "activation_17", "class_name": "Activation", "config": {"name": "activation_17", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_9", 0, 0, {}]]]}, {"name": "conv1d_18", "class_name": "Conv1D", "config": {"name": "conv1d_18", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_17", 0, 0, {}]]]}, {"name": "add_8", "class_name": "Add", "config": {"name": "add_8", "trainable": true}, "inbound_nodes": [[["input_9", 0, 0, {}], ["conv1d_18", 0, 0, {}]]]}], "input_layers": [["input_9", 0, 0]], "output_layers": [["add_8", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_10", "layers": [{"name": "input_10", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_10"}, "inbound_nodes": []}, {"name": "activation_19", "class_name": "Activation", "config": {"name": "activation_19", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_10", 0, 0, {}]]]}, {"name": "conv1d_20", "class_name": "Conv1D", "config": {"name": "conv1d_20", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_19", 0, 0, {}]]]}, {"name": "add_9", "class_name": "Add", "config": {"name": "add_9", "trainable": true}, "inbound_nodes": [[["input_10", 0, 0, {}], ["conv1d_20", 0, 0, {}]]]}], "input_layers": [["input_10", 0, 0]], "output_layers": [["add_9", 0, 0]]}}, {"class_name": "Model", "config": {"name": "model_11", "layers": [{"name": "input_11", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 500, 128], "dtype": "float32", "sparse": false, "name": "input_11"}, "inbound_nodes": []}, {"name": "activation_21", "class_name": "Activation", "config": {"name": "activation_21", "trainable": true, "activation": "relu"}, "inbound_nodes": [[["input_11", 0, 0, {}]]]}, {"name": "conv1d_22", "class_name": "Conv1D", "config": {"name": "conv1d_22", "trainable": true, "filters": 128, "kernel_size": [5], "strides": [1], "padding": "same", "dilation_rate": [1], "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "inbound_nodes": [[["activation_21", 0, 0, {}]]]}, {"name": "add_10", "class_name": "Add", "config": {"name": "add_10", "trainable": true}, "inbound_nodes": [[["input_11", 0, 0, {}], ["conv1d_22", 0, 0, {}]]]}], "input_layers": [["input_11", 0, 0]], "output_layers": [["add_10", 0, 0]]}}, {"class_name": "Flatten", "config": {"name": "flatten_1", "trainable": true}}, {"class_name": "Dense", "config": {"name": "dense_2", "trainable": true, "units": 1, "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}], "inbound_nodes": [[["input_12", 0, 0, {}]]]}], "input_layers": [["input_12", 0, 0]], "output_layers": [["sequential_2", 1, 0]]}, "inbound_nodes": [[["model_6", 1, 0, {}]]]}], "input_layers": [["input_15", 0, 0]], "output_layers": [["model_12", 1, 0]]}, "keras_version": "2.1.5", "backend": "tensorflow"}
the_code/General/models/MEL_GAN/MEL_GAN_gen_iter160k_weights.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:268a3ee2ea59e471127c990fdc8c71e3898789e777c5e2a6841118ab34a19958
3
+ size 36598508
the_code/General/output/testdata_motif_implant_100seqs.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9c9714546e46a68d980ab0f180d8719a71ed8f850ded5cb6c1d6145535910eb
3
+ size 3499451
the_code/General/output/testdata_sequence_evolution_10seqs.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfdde021d10cc8869dc5b6f72ae82d60784d014730b5ec430c9d0dc7c7e6ee00
3
+ size 58025
the_code/General/utils.py ADDED
@@ -0,0 +1,412 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tensorflow as tf
2
+ import numpy as np
3
+ import matplotlib
4
+
5
+ def one_hot_encode_along_row_axis(sequence):
6
+ to_return = np.zeros((1, len(sequence), 4), dtype=np.int8)
7
+ seq_to_one_hot_fill_in_array(zeros_array=to_return[0], sequence=sequence, one_hot_axis=1)
8
+ return to_return
9
+
10
+
11
+ def seq_to_one_hot_fill_in_array(zeros_array, sequence, one_hot_axis):
12
+ assert one_hot_axis == 0 or one_hot_axis == 1
13
+ if one_hot_axis == 0:
14
+ assert zeros_array.shape[1] == len(sequence)
15
+ elif one_hot_axis == 1:
16
+ assert zeros_array.shape[0] == len(sequence)
17
+ for (i, char) in enumerate(sequence):
18
+ if char == "A" or char == "a":
19
+ char_idx = 0
20
+ elif char == "C" or char == "c":
21
+ char_idx = 1
22
+ elif char == "G" or char == "g":
23
+ char_idx = 2
24
+ elif char == "T" or char == "t":
25
+ char_idx = 3
26
+ elif char == "N" or char == "n":
27
+ continue
28
+ else:
29
+ raise RuntimeError("Unsupported character: " + str(char))
30
+ if one_hot_axis == 0:
31
+ zeros_array[char_idx, i] = 1
32
+ elif one_hot_axis == 1:
33
+ zeros_array[i, char_idx] = 1
34
+
35
+
36
+ def readfile(filename):
37
+ ids = []
38
+ ids_d = {}
39
+ seqs = {}
40
+ f = open(filename, 'r')
41
+ lines = f.readlines()
42
+ f.close()
43
+ seq = []
44
+ for line in lines:
45
+ if line[0] == '>':
46
+ ids.append(line[1:].rstrip('\n'))
47
+ id_line = line[1:].rstrip('\n').split('_')[0]
48
+ if id_line not in seqs:
49
+ seqs[id_line] = []
50
+ if id_line not in ids_d:
51
+ ids_d[id_line] = id_line
52
+ if seq:
53
+ seqs[ids[-2].split('_')[0]] = ("".join(seq))
54
+ seq = []
55
+ else:
56
+ seq.append(line.rstrip('\n').upper())
57
+ if seq:
58
+ seqs[ids[-1].split('_')[0]] = ("".join(seq))
59
+
60
+ return ids, ids_d, seqs
61
+
62
+
63
+ def prepare_data(filename):
64
+ ids, ids_d, seqs, = readfile(filename)
65
+ X = np.array([one_hot_encode_along_row_axis(seqs[id_]) for id_ in ids_d]).squeeze(axis=1)
66
+ data = X
67
+ return data, ids
68
+
69
+
70
+ def plot_prediction_givenax(model, fig, ntrack, track_no, seq_onehot):
71
+ NUM_CLASSES = model.output_shape[1]
72
+ real_score = model.predict(seq_onehot)[0]
73
+ ax = fig.add_subplot(ntrack, 2, track_no*2-1)
74
+ ax.margins(x=0)
75
+ ax.set_ylabel('Prediction', color='red')
76
+ ax.plot(real_score, '--', color='gray', linewidth=3)
77
+ ax.scatter(range(NUM_CLASSES), real_score, marker='o', color='red', linewidth=11)
78
+ ax.tick_params(axis='y', labelcolor='red')
79
+ ax.set_xticks(range(NUM_CLASSES),)
80
+ ax.set_xticklabels(range(1, NUM_CLASSES+1))
81
+ ax.grid(True)
82
+ return ax
83
+
84
+
85
+ def create_saturation_mutagenesis_x(onehot):
86
+ mutagenesis_X = {"X":[],"ids":[]}
87
+ onehot = onehot.squeeze()
88
+ for mutloc,nt in enumerate(onehot):
89
+ new_X = np.copy(onehot)
90
+ if list(nt) == [1, 0, 0, 0]:
91
+ new_X[mutloc,:] = np.array([0, 1, 0, 0], dtype='int8')
92
+ mutagenesis_X["X"].append(np.copy(new_X))
93
+ new_X[mutloc,:] = np.array([0, 0, 1, 0], dtype='int8')
94
+ mutagenesis_X["X"].append(np.copy(new_X))
95
+ new_X[mutloc,:] = np.array([0, 0, 0, 1], dtype='int8')
96
+ mutagenesis_X["X"].append(np.copy(new_X))
97
+ mutagenesis_X["ids"].append(str(mutloc)+"_C")
98
+ mutagenesis_X["ids"].append(str(mutloc)+"_G")
99
+ mutagenesis_X["ids"].append(str(mutloc)+"_T")
100
+ if list(nt) == [0, 1, 0, 0]:
101
+ new_X[mutloc,:] = np.array([1, 0, 0, 0], dtype='int8')
102
+ mutagenesis_X["X"].append(np.copy(new_X))
103
+ new_X[mutloc,:] = np.array([0, 0, 1, 0], dtype='int8')
104
+ mutagenesis_X["X"].append(np.copy(new_X))
105
+ new_X[mutloc,:] = np.array([0, 0, 0, 1], dtype='int8')
106
+ mutagenesis_X["X"].append(np.copy(new_X))
107
+ mutagenesis_X["ids"].append(str(mutloc)+"_A")
108
+ mutagenesis_X["ids"].append(str(mutloc)+"_G")
109
+ mutagenesis_X["ids"].append(str(mutloc)+"_T")
110
+ if list(nt) == [0, 0, 1, 0]:
111
+ new_X[mutloc,:] = np.array([1, 0, 0, 0], dtype='int8')
112
+ mutagenesis_X["X"].append(np.copy(new_X))
113
+ new_X[mutloc,:] = np.array([0, 1, 0, 0], dtype='int8')
114
+ mutagenesis_X["X"].append(np.copy(new_X))
115
+ new_X[mutloc,:] = np.array([0, 0, 0, 1], dtype='int8')
116
+ mutagenesis_X["X"].append(np.copy(new_X))
117
+ mutagenesis_X["ids"].append(str(mutloc)+"_A")
118
+ mutagenesis_X["ids"].append(str(mutloc)+"_C")
119
+ mutagenesis_X["ids"].append(str(mutloc)+"_T")
120
+ if list(nt) == [0, 0, 0, 1]:
121
+ new_X[mutloc,:] = np.array([1, 0, 0, 0], dtype='int8')
122
+ mutagenesis_X["X"].append(np.copy(new_X))
123
+ new_X[mutloc,:] = np.array([0, 1, 0, 0], dtype='int8')
124
+ mutagenesis_X["X"].append(np.copy(new_X))
125
+ new_X[mutloc,:] = np.array([0, 0, 1, 0], dtype='int8')
126
+ mutagenesis_X["X"].append(np.copy(new_X))
127
+ mutagenesis_X["ids"].append(str(mutloc)+"_A")
128
+ mutagenesis_X["ids"].append(str(mutloc)+"_C")
129
+ mutagenesis_X["ids"].append(str(mutloc)+"_G")
130
+
131
+ mutagenesis_X["X"] = np.array(mutagenesis_X["X"])
132
+ return mutagenesis_X
133
+
134
+
135
+ def plot_mutagenesis_givenax(model, fig, ntrack, track_no, seq_onehot, class_no):
136
+
137
+ mutagenesis_X = create_saturation_mutagenesis_x(seq_onehot)
138
+ prediction_mutagenesis_X = model.predict(mutagenesis_X["X"])
139
+ original_prediction = model.predict(seq_onehot)
140
+ class_no = class_no-1
141
+ seq_shape = (seq_onehot.shape[1],seq_onehot.shape[2])
142
+
143
+ arr_a = np.zeros(seq_shape[0])
144
+ arr_c = np.zeros(seq_shape[0])
145
+ arr_g = np.zeros(seq_shape[0])
146
+ arr_t = np.zeros(seq_shape[0])
147
+ delta_pred = original_prediction[:,class_no] - prediction_mutagenesis_X[:,class_no]
148
+ for i,mut in enumerate(mutagenesis_X["ids"]):
149
+ if mut.endswith("A"):
150
+ arr_a[int(mut.split("_")[0])]=delta_pred[i]
151
+ if mut.endswith("C"):
152
+ arr_c[int(mut.split("_")[0])]=delta_pred[i]
153
+ if mut.endswith("G"):
154
+ arr_g[int(mut.split("_")[0])]=delta_pred[i]
155
+ if mut.endswith("T"):
156
+ arr_t[int(mut.split("_")[0])]=delta_pred[i]
157
+
158
+ arr_a[arr_a == 0] = None
159
+ arr_c[arr_c == 0] = None
160
+ arr_g[arr_g == 0] = None
161
+ arr_t[arr_t == 0] = None
162
+
163
+ ax = fig.add_subplot(ntrack, 1, track_no)
164
+ ax.set_ylabel('In silico\nMutagenesis')
165
+ ax.scatter(range(seq_shape[0]), -1*arr_a, label='A', color='green')
166
+ ax.scatter(range(seq_shape[0]), -1*arr_c, label='C', color='blue')
167
+ ax.scatter(range(seq_shape[0]), -1*arr_g, label='G', color='orange')
168
+ ax.scatter(range(seq_shape[0]), -1*arr_t, label='T', color='red')
169
+ ax.legend()
170
+ ax.axhline(y=0, linestyle='--', color='gray')
171
+ ax.set_xlim((0, seq_shape[0]))
172
+ _ = ax.set_xticks(np.arange(0, seq_shape[0]+1, 10))
173
+
174
+ return ax
175
+
176
+
177
+ def insilico_evolution(regions, model, class_no, n_mutation):
178
+ #from scipy.stats import zscore
179
+ nuc_to_onehot = {"A":[1, 0, 0, 0],"C":[0, 1, 0, 0],"G":[0, 0, 1, 0],"T":[0, 0, 0, 1]}
180
+ mutation_pred = []
181
+ mutation_loc = []
182
+ print("Sequence index:",end=" ")
183
+ for id_ in range(len(regions)):
184
+ start_x = np.copy(regions[id_:id_+1])
185
+ pred = []
186
+ mut = []
187
+ for i in range(n_mutation):
188
+ mutagenesis_X = create_saturation_mutagenesis_x(start_x)
189
+ prediction_mutagenesis_X = model.predict(mutagenesis_X["X"])
190
+ original_prediction = model.predict(start_x)
191
+ ## To use max z-score
192
+ # next_one = mutagenesis_X["ids"][np.argmax(zscore(prediction_mutagenesis_X-original_prediction,axis=1)[:,class_no-1])]
193
+ ## To use max score
194
+ next_one = mutagenesis_X["ids"][np.argmax(prediction_mutagenesis_X[:,class_no-1]-original_prediction[:,class_no-1])]
195
+ pred.append(original_prediction)
196
+ mut.append(next_one)
197
+ start_x[0][int(next_one.split("_")[0]),:] = np.array(nuc_to_onehot[next_one.split("_")[1]], dtype='int8')
198
+ original_prediction = model.predict(start_x)
199
+ pred.append(original_prediction)
200
+ mutation_pred.append(pred)
201
+ mutation_loc.append(mut)
202
+ print(id_,end=",")
203
+ mutation_pred = np.array(mutation_pred).squeeze()
204
+ mutation_loc = np.array(mutation_loc)
205
+ return mutation_pred, mutation_loc
206
+
207
+
208
+ def random_sequence_by_shuffling(seq_to_shuffle, number_of_random_regions):
209
+ seq_to_shuffle_onehot = one_hot_encode_along_row_axis(seq_to_shuffle)
210
+ shuffled_regions = []
211
+ for i in range(number_of_random_regions):
212
+ np.random.shuffle(seq_to_shuffle_onehot[0])
213
+ shuffled_regions.append(np.copy(seq_to_shuffle_onehot[0]))
214
+ shuffled_regions = np.array(shuffled_regions)
215
+ return shuffled_regions
216
+
217
+
218
+ def random_sequence(seq_len, number_of_random_regions):
219
+ random_regions = []
220
+ for k in range(number_of_random_regions):
221
+ seq = []
222
+ for i in range(seq_len):
223
+ seq.append(np.random.choice(["A","C","G","T"]))
224
+ random_regions.append(one_hot_encode_along_row_axis("".join(seq)).squeeze())
225
+ random_regions = np.array(random_regions)
226
+ return random_regions
227
+
228
+
229
+ def random_sequence_gc_adjusted(seq_len, number_of_random_regions, path_to_use_GC_content):
230
+ regions_to_use_GC = prepare_data(path_to_use_GC_content)
231
+ ACGT_dist = np.sum(regions_to_use_GC[0],axis=0)/len(regions_to_use_GC[0])
232
+ random_regions = []
233
+ for k in range(number_of_random_regions):
234
+ seq = []
235
+ for i in range(seq_len):
236
+ seq.append(np.random.choice(["A","C","G","T"],p=list(ACGT_dist[i])))
237
+ random_regions.append(one_hot_encode_along_row_axis("".join(seq)).squeeze())
238
+ random_regions = np.array(random_regions)
239
+ return random_regions
240
+
241
+
242
+ def plot_deepexplainer_givenax(explainer, fig, ntrack, track_no, seq_onehot):
243
+ shap_values_ = explainer.shap_values(seq_onehot,ranked_outputs=1,check_additivity=False)
244
+ _, ax1 = plot_weights(shap_values_[0]*seq_onehot,
245
+ fig, ntrack, 1, track_no,
246
+ title="", subticks_frequency=10, ylab="")
247
+ return ax1
248
+
249
+
250
+ def load_model(path_json, path_hdf5):
251
+ model_json_file = open(path_json)
252
+ model_json = model_json_file.read()
253
+ model = tf.keras.models.model_from_json(model_json)
254
+ model.load_weights(path_hdf5)
255
+ return model
256
+
257
+
258
+ def add_pattern_to_best_location(pattern, regions, model, class_no):
259
+ pattern_added_regions = np.zeros(regions.shape,dtype="int")
260
+ pattern_locations = np.zeros(regions.shape[0],dtype="int")
261
+ print("Sequence index:",end=" ")
262
+ for r, region in enumerate(regions):
263
+ tmp_array = np.zeros((regions.shape[1]-pattern.shape[1]+1,regions.shape[1],regions.shape[2]))
264
+ for nt in range(tmp_array.shape[0]):
265
+ tmp_array[nt] = np.copy(region)
266
+ tmp_array[nt,nt:nt+pattern.shape[1],:] = pattern[0]
267
+ prediction = model.predict(tmp_array)[:,class_no-1]
268
+ pattern_locations[r] = np.argmax(prediction)
269
+ pattern_added_regions[r] = tmp_array[pattern_locations[r]]
270
+ print(r,end=",")
271
+ print("")
272
+ return {"regions":pattern_added_regions, "locations":pattern_locations}
273
+
274
+
275
+ def plot_a(ax, base, left_edge, height, color):
276
+ a_polygon_coords = [
277
+ np.array([
278
+ [0.0, 0.0],
279
+ [0.5, 1.0],
280
+ [0.5, 0.8],
281
+ [0.2, 0.0],
282
+ ]),
283
+ np.array([
284
+ [1.0, 0.0],
285
+ [0.5, 1.0],
286
+ [0.5, 0.8],
287
+ [0.8, 0.0],
288
+ ]),
289
+ np.array([
290
+ [0.225, 0.45],
291
+ [0.775, 0.45],
292
+ [0.85, 0.3],
293
+ [0.15, 0.3],
294
+ ])
295
+ ]
296
+ for polygon_coords in a_polygon_coords:
297
+ ax.add_patch(matplotlib.patches.Polygon((np.array([1, height])[None, :] * polygon_coords
298
+ + np.array([left_edge, base])[None, :]),
299
+ facecolor=color, edgecolor=color))
300
+
301
+
302
+ def plot_c(ax, base, left_edge, height, color):
303
+ ax.add_patch(matplotlib.patches.Ellipse(xy=[left_edge + 0.65, base + 0.5 * height], width=1.3, height=height,
304
+ facecolor=color, edgecolor=color))
305
+ ax.add_patch(
306
+ matplotlib.patches.Ellipse(xy=[left_edge + 0.65, base + 0.5 * height], width=0.7 * 1.3, height=0.7 * height,
307
+ facecolor='white', edgecolor='white'))
308
+ ax.add_patch(matplotlib.patches.Rectangle(xy=[left_edge + 1, base], width=1.0, height=height,
309
+ facecolor='white', edgecolor='white', fill=True))
310
+
311
+
312
+ def plot_g(ax, base, left_edge, height, color):
313
+ ax.add_patch(matplotlib.patches.Ellipse(xy=[left_edge + 0.65, base + 0.5 * height], width=1.3, height=height,
314
+ facecolor=color, edgecolor=color))
315
+ ax.add_patch(
316
+ matplotlib.patches.Ellipse(xy=[left_edge + 0.65, base + 0.5 * height], width=0.7 * 1.3, height=0.7 * height,
317
+ facecolor='white', edgecolor='white'))
318
+ ax.add_patch(matplotlib.patches.Rectangle(xy=[left_edge + 1, base], width=1.0, height=height,
319
+ facecolor='white', edgecolor='white', fill=True))
320
+ ax.add_patch(
321
+ matplotlib.patches.Rectangle(xy=[left_edge + 0.825, base + 0.085 * height], width=0.174, height=0.415 * height,
322
+ facecolor=color, edgecolor=color, fill=True))
323
+ ax.add_patch(
324
+ matplotlib.patches.Rectangle(xy=[left_edge + 0.625, base + 0.35 * height], width=0.374, height=0.15 * height,
325
+ facecolor=color, edgecolor=color, fill=True))
326
+
327
+
328
+ def plot_t(ax, base, left_edge, height, color):
329
+ ax.add_patch(matplotlib.patches.Rectangle(xy=[left_edge + 0.4, base],
330
+ width=0.2, height=height, facecolor=color, edgecolor=color, fill=True))
331
+ ax.add_patch(matplotlib.patches.Rectangle(xy=[left_edge, base + 0.8 * height],
332
+ width=1.0, height=0.2 * height, facecolor=color, edgecolor=color,
333
+ fill=True))
334
+
335
+
336
+ default_colors = {0: 'green', 1: 'blue', 2: 'orange', 3: 'red'}
337
+ default_plot_funcs = {0: plot_a, 1: plot_c, 2: plot_g, 3: plot_t}
338
+
339
+
340
+ def plot_weights_given_ax(ax, array,
341
+ height_padding_factor,
342
+ length_padding,
343
+ subticks_frequency,
344
+ highlight,
345
+ colors=default_colors,
346
+ plot_funcs=default_plot_funcs):
347
+ if len(array.shape) == 3:
348
+ array = np.squeeze(array)
349
+ assert len(array.shape) == 2, array.shape
350
+ if array.shape[0] == 4 and array.shape[1] != 4:
351
+ array = array.transpose(1, 0)
352
+ assert array.shape[1] == 4
353
+ max_pos_height = 0.0
354
+ min_neg_height = 0.0
355
+ heights_at_positions = []
356
+ depths_at_positions = []
357
+ for i in range(array.shape[0]):
358
+ acgt_vals = sorted(enumerate(array[i, :]), key=lambda x: abs(x[1]))
359
+ positive_height_so_far = 0.0
360
+ negative_height_so_far = 0.0
361
+ for letter in acgt_vals:
362
+ plot_func = plot_funcs[letter[0]]
363
+ color = colors[letter[0]]
364
+ if letter[1] > 0:
365
+ height_so_far = positive_height_so_far
366
+ positive_height_so_far += letter[1]
367
+ else:
368
+ height_so_far = negative_height_so_far
369
+ negative_height_so_far += letter[1]
370
+ plot_func(ax=ax, base=height_so_far, left_edge=i, height=letter[1], color=color)
371
+ max_pos_height = max(max_pos_height, positive_height_so_far)
372
+ min_neg_height = min(min_neg_height, negative_height_so_far)
373
+ heights_at_positions.append(positive_height_so_far)
374
+ depths_at_positions.append(negative_height_so_far)
375
+
376
+ for color in highlight:
377
+ for start_pos, end_pos in highlight[color]:
378
+ assert start_pos >= 0.0 and end_pos <= array.shape[0]
379
+ min_depth = np.min(depths_at_positions[start_pos:end_pos])
380
+ max_height = np.max(heights_at_positions[start_pos:end_pos])
381
+ ax.add_patch(
382
+ matplotlib.patches.Rectangle(xy=[start_pos, min_depth],
383
+ width=end_pos - start_pos,
384
+ height=max_height - min_depth,
385
+ edgecolor=color, fill=False))
386
+
387
+ ax.set_xlim(-length_padding, array.shape[0] + length_padding)
388
+ ax.xaxis.set_ticks(np.arange(0.0, array.shape[0] + 1, subticks_frequency))
389
+ height_padding = max(abs(min_neg_height) * (height_padding_factor),
390
+ abs(max_pos_height) * (height_padding_factor))
391
+ ax.set_ylim(min_neg_height - height_padding, max_pos_height + height_padding)
392
+ return ax
393
+
394
+
395
+ def plot_weights(array, fig, n, n1, n2, title='', ylab='',
396
+ height_padding_factor=0.2,
397
+ length_padding=1.0,
398
+ subticks_frequency=20,
399
+ colors=default_colors,
400
+ plot_funcs=default_plot_funcs,
401
+ highlight={}):
402
+ ax = fig.add_subplot(n, n1, n2)
403
+ ax.set_title(title)
404
+ ax.set_ylabel(ylab)
405
+ y = plot_weights_given_ax(ax=ax, array=array,
406
+ height_padding_factor=height_padding_factor,
407
+ length_padding=length_padding,
408
+ subticks_frequency=subticks_frequency,
409
+ colors=colors,
410
+ plot_funcs=plot_funcs,
411
+ highlight=highlight)
412
+ return fig, ax
the_code/General/wgan_gp.py ADDED
@@ -0,0 +1,344 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Following links were used to prepare this script.
2
+ # https://github.com/keras-team/keras-contrib/blob/master/examples/improved_wgan.py
3
+ # https://github.com/igul222/improved_wgan_training
4
+ # https://arxiv.org/abs/1712.06148
5
+
6
+ from __future__ import print_function, division
7
+ import os
8
+ import errno
9
+ from keras.layers.merge import _Merge
10
+ from keras.layers import Input, Dense, Reshape, Flatten, add, Activation
11
+ from keras.layers.convolutional import Conv1D
12
+ from keras.models import Sequential, Model
13
+ from keras.optimizers import Adam
14
+ from functools import partial
15
+ import keras.backend as K
16
+ import numpy as np
17
+
18
+
19
+ BATCH_SIZE = 128
20
+ ITERS = 400001
21
+ SEQ_LEN = 500
22
+ SEQ_DIM = 4
23
+ DIM = 128
24
+ CRITIC_ITERS = 10
25
+ LAMBDA = 1
26
+ loginterval = 1000
27
+ seqinterval = 10000
28
+ modelinterval = 10000
29
+ selectedmodel = 400000
30
+ suffix = "generated"
31
+ ngenerate = 10
32
+ outputdirc = "./output/"
33
+ fastafile = "./data/KC_regions.fa"
34
+
35
+
36
+ for file in [outputdirc,
37
+ os.path.join(outputdirc, 'models'),
38
+ os.path.join(outputdirc, 'samples_ACGT'),
39
+ os.path.join(outputdirc, 'samples_raw')]:
40
+ try:
41
+ os.makedirs(file)
42
+ except OSError as exc:
43
+ if exc.errno == errno.EEXIST:
44
+ pass
45
+
46
+
47
+ def readfile(filename):
48
+ ids = []
49
+ seqs = []
50
+ f = open(filename, 'r')
51
+ lines = f.readlines()
52
+ f.close()
53
+ seq = []
54
+ for line in lines:
55
+ if line[0] == '>':
56
+ ids.append(line[1:].rstrip('\n'))
57
+ if seq != []: seqs.append("".join(seq))
58
+ seq = []
59
+ else:
60
+ seq.append(line.rstrip('\n').upper())
61
+ if seq != []:
62
+ seqs.append("".join(seq))
63
+
64
+ return ids, seqs
65
+
66
+
67
+ def one_hot_encode_along_row_axis(sequence):
68
+ to_return = np.zeros((1, len(sequence), 4), dtype=np.int8)
69
+ seq_to_one_hot_fill_in_array(zeros_array=to_return[0],
70
+ sequence=sequence, one_hot_axis=1)
71
+ return to_return
72
+
73
+
74
+ def seq_to_one_hot_fill_in_array(zeros_array, sequence, one_hot_axis):
75
+ assert one_hot_axis == 0 or one_hot_axis == 1
76
+ if one_hot_axis == 0:
77
+ assert zeros_array.shape[1] == len(sequence)
78
+ elif one_hot_axis == 1:
79
+ assert zeros_array.shape[0] == len(sequence)
80
+ for (i, char) in enumerate(sequence):
81
+ if char == "A" or char == "a":
82
+ char_idx = 0
83
+ elif char == "C" or char == "c":
84
+ char_idx = 1
85
+ elif char == "G" or char == "g":
86
+ char_idx = 2
87
+ elif char == "T" or char == "t":
88
+ char_idx = 3
89
+ elif char == "N" or char == "n":
90
+ continue
91
+ else:
92
+ raise RuntimeError("Unsupported character: "+str(char))
93
+ if one_hot_axis == 0:
94
+ zeros_array[char_idx, i] = 1
95
+ elif one_hot_axis == 1:
96
+ zeros_array[i, char_idx] = 1
97
+
98
+
99
+ class RandomWeightedAverage(_Merge):
100
+ """Provides a (random) weighted average between real and generated image samples"""
101
+ def _merge_function(self, inputs):
102
+ alpha = K.random_uniform((BATCH_SIZE, 1, 1))
103
+ return (alpha * inputs[0]) + ((1 - alpha) * inputs[1])
104
+
105
+
106
+ class WGANGP():
107
+ def __init__(self):
108
+ self.img_rows = SEQ_LEN
109
+ self.img_cols = SEQ_DIM
110
+ self.img_shape = (self.img_rows, self.img_cols)
111
+ self.latent_dim = DIM
112
+
113
+ # Following parameter and optimizer set as recommended in paper
114
+ self.n_critic = CRITIC_ITERS
115
+ optimizer = Adam(lr=1e-4, beta_1=0.5, beta_2=0.9)
116
+
117
+ # Build the generator and critic
118
+ self.generator = self.build_generator()
119
+ self.critic = self.build_critic()
120
+
121
+ # -------------------------------
122
+ # Construct Computational Graph
123
+ # for the Critic
124
+ # -------------------------------
125
+
126
+ # Freeze generator's layers while training critic
127
+ self.generator.trainable = False
128
+
129
+ # Image input (real sample)
130
+ real_img = Input(shape=self.img_shape)
131
+
132
+ # Noise input
133
+ z_disc = Input(shape=(DIM,))
134
+ # Generate image based of noise (fake sample)
135
+ fake_img = self.generator(z_disc)
136
+
137
+ # Discriminator determines validity of the real and fake images
138
+ fake = self.critic(fake_img)
139
+ valid = self.critic(real_img)
140
+
141
+ # Construct weighted average between real and fake images
142
+ interpolated_img = RandomWeightedAverage()([real_img, fake_img])
143
+ # Determine validity of weighted sample
144
+ validity_interpolated = self.critic(interpolated_img)
145
+
146
+ # Use Python partial to provide loss function with additional
147
+ # 'averaged_samples' argument
148
+ partial_gp_loss = partial(self.gradient_penalty_loss, averaged_samples=interpolated_img)
149
+ partial_gp_loss.__name__ = 'gradient_penalty' # Keras requires function names
150
+
151
+ self.critic_model = Model(inputs=[real_img, z_disc],
152
+ outputs=[valid, fake, validity_interpolated])
153
+ self.critic_model.compile(loss=[self.wasserstein_loss, self.wasserstein_loss, partial_gp_loss],
154
+ optimizer=optimizer,
155
+ loss_weights=[1, 1, 10])
156
+
157
+ # -------------------------------
158
+ # Construct Computational Graph
159
+ # for Generator
160
+ # -------------------------------
161
+
162
+ # For the generator we freeze the critic's layers
163
+ self.critic.trainable = False
164
+ self.generator.trainable = True
165
+
166
+ # Sampled noise for input to generator
167
+ z_gen = Input(shape=(DIM,))
168
+ # Generate images based of noise
169
+ img = self.generator(z_gen)
170
+ # Discriminator determines validity
171
+ valid = self.critic(img)
172
+ # Defines generator model
173
+ self.generator_model = Model(z_gen, valid)
174
+ self.generator_model.compile(loss=self.wasserstein_loss, optimizer=optimizer)
175
+
176
+ def gradient_penalty_loss(self, y_true, y_pred, averaged_samples):
177
+ """
178
+ Computes gradient penalty based on prediction and weighted real / fake samples
179
+ """
180
+ gradients = K.gradients(y_pred, averaged_samples)[0]
181
+ # compute the euclidean norm by squaring ...
182
+ gradients_sqr = K.square(gradients)
183
+ # ... summing over the rows ...
184
+ gradients_sqr_sum = K.sum(gradients_sqr,
185
+ axis=np.arange(1, len(gradients_sqr.shape)))
186
+ # ... and sqrt
187
+ gradient_l2_norm = K.sqrt(gradients_sqr_sum)
188
+ # compute lambda * (1 - ||grad||)^2 still for each single sample
189
+ gradient_penalty = LAMBDA * K.square(1 - gradient_l2_norm)
190
+ # return the mean as loss over all the batch samples
191
+ return K.mean(gradient_penalty)
192
+
193
+ def wasserstein_loss(self, y_true, y_pred):
194
+ return K.mean(y_true * y_pred)
195
+
196
+ def res_cnn(self):
197
+ input_tensor = Input(shape=(SEQ_LEN, DIM))
198
+ x = Activation('relu')(input_tensor)
199
+ x = Conv1D(DIM, 5, padding='same')(x)
200
+ output = add([input_tensor, x])
201
+ res_1d = Model(inputs=[input_tensor], outputs=[output])
202
+ return res_1d
203
+
204
+ def build_generator(self):
205
+ model = Sequential()
206
+ model.add(Dense(SEQ_LEN * DIM, activation='elu', input_shape=(DIM,)))
207
+ model.add(Reshape((SEQ_LEN, DIM)))
208
+ model.add(self.res_cnn())
209
+ model.add(self.res_cnn())
210
+ model.add(self.res_cnn())
211
+ model.add(self.res_cnn())
212
+ model.add(self.res_cnn())
213
+ model.add(Conv1D(SEQ_DIM, 1, padding='same'))
214
+ model.add(Activation('softmax'))
215
+ model.summary()
216
+ noise = Input(shape=(self.latent_dim,))
217
+ img = model(noise)
218
+ return Model(noise, img)
219
+
220
+ def build_critic(self):
221
+ model = Sequential()
222
+ model.add(Conv1D(DIM, 1, padding='same', input_shape=(SEQ_LEN, SEQ_DIM)))
223
+ model.add(self.res_cnn())
224
+ model.add(self.res_cnn())
225
+ model.add(self.res_cnn())
226
+ model.add(self.res_cnn())
227
+ model.add(self.res_cnn())
228
+ model.add(Flatten())
229
+ model.add(Dense(1))
230
+ model.summary()
231
+ img = Input(shape=self.img_shape)
232
+ validity = model(img)
233
+ return Model(img, validity)
234
+
235
+ def train(self, foldername, filename, epochs, batch_size,
236
+ log_interval=1000, seq_interval=10000, model_interval=10000):
237
+
238
+ ids, seqs = readfile(filename)
239
+ X_train = np.array([one_hot_encode_along_row_axis(seq) for seq in seqs]).squeeze(axis=1)
240
+
241
+ # Adversarial ground truths
242
+ valid = -np.ones((batch_size, 1))
243
+ fake = np.ones((batch_size, 1))
244
+ dummy = np.zeros((batch_size, 1))
245
+
246
+ disc_json = self.critic_model.to_json()
247
+ with open(foldername + '/disc.json', "w") as disc_json_file:
248
+ disc_json_file.write(disc_json)
249
+
250
+ gen_json = self.generator_model.to_json()
251
+ with open(foldername + '/gen.json', "w") as gen_json_file:
252
+ gen_json_file.write(gen_json)
253
+
254
+ d_loss_list = []
255
+ g_loss_list = []
256
+ for epoch in range(epochs):
257
+ for _ in range(self.n_critic):
258
+ # ---------------------
259
+ # Train Discriminator
260
+ # ---------------------
261
+ # Select a random batch of images
262
+ idx = np.random.randint(0, X_train.shape[0], batch_size)
263
+ imgs = X_train[idx]
264
+ # Sample generator input
265
+ noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
266
+ # Train the critic
267
+ d_loss = self.critic_model.train_on_batch([imgs, noise],
268
+ [valid, fake, dummy])
269
+ # ---------------------
270
+ # Train Generator
271
+ # ---------------------
272
+ g_loss = self.generator_model.train_on_batch(noise, valid)
273
+
274
+ if epoch % log_interval == 0:
275
+ d_loss_list.append(d_loss)
276
+ g_loss_list.append(g_loss)
277
+
278
+ if epoch % seq_interval == 0:
279
+ samples = []
280
+ for i in range(1):
281
+ samples.extend(self.generate_samples())
282
+ with open(foldername + '/samples_ACGT/samples_ACGT_{}.fa'.format(epoch), 'w') as f:
283
+ for line_number, s in enumerate(samples[0]):
284
+ f.write(">" + str(line_number+1) + "\n")
285
+ s = "".join(s)
286
+ f.write(s + "\n")
287
+ with open((foldername + '/samples_raw/samples_{}.txt').format(epoch), 'w') as f2:
288
+ print(samples[1], file=f2)
289
+
290
+ if epoch % model_interval == 0:
291
+ self.critic_model.save_weights(foldername + '/models/disc_{}.hdf5'.format(epoch))
292
+ self.critic_model.save(foldername + '/models/disc_{}.h5'.format(epoch))
293
+ self.generator_model.save_weights(foldername + '/models/gen_{}.hdf5'.format(epoch))
294
+ self.generator_model.save(foldername + '/models/gen_{}.h5'.format(epoch))
295
+
296
+
297
+ import pickle
298
+ f = open(foldername + '/d_g_loss.pkl', "wb")
299
+ pickle.dump(d_loss_list,f)
300
+ pickle.dump(g_loss_list,f)
301
+ f.close()
302
+
303
+
304
+ def generate_samples(self):
305
+ char_ACGT={0:'A' , 1:'C' , 2:'G' , 3:'T'}
306
+ noise = np.random.normal(0, 1, (BATCH_SIZE, self.latent_dim))
307
+ gen_imgs = self.generator.predict(noise)
308
+ samples = np.argmax(gen_imgs, axis=2)
309
+ decoded_samples = []
310
+ for i in range(len(samples)):
311
+ decoded = ''
312
+ for j in range(len(samples[i])):
313
+ decoded += char_ACGT[samples[i][j]]
314
+ decoded_samples.append(decoded)
315
+ return decoded_samples, gen_imgs
316
+
317
+ def generate(self, nb=1, model_number=0, result_number=0):
318
+ hdf5_filename = outputdirc + "/models/disc_" + str(model_number) + ".hdf5"
319
+ self.generator_model.load_weights(hdf5_filename)
320
+ samples = []
321
+ for i in range(nb):
322
+ samples.extend(self.generate_samples()[0])
323
+ with open(outputdirc + '/gen_seq/generated_{}_iter_{}.fa'.format(nb*BATCH_SIZE, model_number), 'w') as f:
324
+ counter = 0
325
+ for s in samples:
326
+ counter += 1
327
+ s = "".join(s)
328
+ f.write(">" + str(counter) + "_" + str(result_number) + "_" + str(model_number) + "\n" + s + "\n")
329
+
330
+
331
+ if __name__ == '__main__':
332
+ wgan = WGANGP()
333
+ # Train the model
334
+ wgan.train(outputdirc, fastafile, epochs=ITERS, batch_size=BATCH_SIZE,
335
+ log_interval=loginterval, seq_interval=seqinterval, model_interval=modelinterval)
336
+
337
+ # Generate sequences after training
338
+ try:
339
+ os.makedirs(os.path.join(outputdirc, 'gen_seq'))
340
+ except OSError as exc:
341
+ if exc.errno == errno.EEXIST:
342
+ pass
343
+ for i in range(0, selectedmodel+1, modelinterval):
344
+ wgan.generate(nb=ngenerate, model_number=i, result_number=suffix)