Dataset Viewer
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code: FeaturesError
Exception: ArrowInvalid
Message: Schema at index 1 was different:
id: string
name: string
startTime: int64
endTime: int64
sampleRate: int64
devices: list<item: struct<id: string, position: string, connectionId: string>>
snapshots: list<item: struct<time: int64, deviceData: struct<E4:B3:23:AD:5A:B2: list<item: double>, E4:B3:23:AD:24:0E: list<item: double>, E4:B3:23:AD:22:26: list<item: double>, right_hand_virtual: list<item: double>, right_forearm_virtual: list<item: double>, left_hand_virtual: list<item: double>, left_forearm_virtual: list<item: double>>>>
vs
id: string
name: string
startTime: int64
endTime: int64
sampleRate: int64
devices: list<item: struct<id: string, position: string, connectionId: string>>
snapshots: list<item: struct<time: int64, deviceData: struct<E4:B3:23:AD:5A:B2: list<item: double>, E4:B3:23:AD:22:26: list<item: double>, left_hand_virtual: list<item: double>, left_forearm_virtual: list<item: double>, right_hand_virtual: list<item: double>, right_forearm_virtual: list<item: double>, E4:B3:23:AD:24:0E: list<item: double>>>>
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 243, in compute_first_rows_from_streaming_response
iterable_dataset = iterable_dataset._resolve_features()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
features = _infer_features_from_batch(self.with_format(None)._head())
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
return next(iter(self.iter(batch_size=n)))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
for key, example in iterator:
^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
for key, pa_table in self._iter_arrow():
^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
yield from self.ex_iterable._iter_arrow()
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 531, in _iter_arrow
yield new_key, pa.Table.from_batches(chunks_buffer)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "pyarrow/table.pxi", line 5039, in pyarrow.lib.Table.from_batches
File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: Schema at index 1 was different:
id: string
name: string
startTime: int64
endTime: int64
sampleRate: int64
devices: list<item: struct<id: string, position: string, connectionId: string>>
snapshots: list<item: struct<time: int64, deviceData: struct<E4:B3:23:AD:5A:B2: list<item: double>, E4:B3:23:AD:24:0E: list<item: double>, E4:B3:23:AD:22:26: list<item: double>, right_hand_virtual: list<item: double>, right_forearm_virtual: list<item: double>, left_hand_virtual: list<item: double>, left_forearm_virtual: list<item: double>>>>
vs
id: string
name: string
startTime: int64
endTime: int64
sampleRate: int64
devices: list<item: struct<id: string, position: string, connectionId: string>>
snapshots: list<item: struct<time: int64, deviceData: struct<E4:B3:23:AD:5A:B2: list<item: double>, E4:B3:23:AD:22:26: list<item: double>, left_hand_virtual: list<item: double>, left_forearm_virtual: list<item: double>, right_hand_virtual: list<item: double>, right_forearm_virtual: list<item: double>, E4:B3:23:AD:24:0E: list<item: double>>>>Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Robotic Dataset 1,000+ hours
The dataset comprises 1,000+ hours of multimodal robot manipulation data collected from real-world environments, demonstrating manipulation tasks such as cleaning, laundry folding, and dishwashing performed by different robots. It contains synchronized sensor data from seven 9-axis IMU units attached to the robot arms, forearms, and chest, along with head-mounted videos and detailed trajectory recordings. — Get the data
Dataset characteristics:
| Characteristic | Data |
|---|---|
| Description | 1,000 hours of multimodal recordings of cleaning, laundry folding, and dishwashing activities |
| Data types | Video (head-mounted), 9-axis IMU streams |
| Tasks | Human Activity Recognition, Motion Analysis, Multimodal Learning, Action Segmentation |
| Hours of recordings | 1,000 |
| IMU placements | Chest, Upper arms, Forearms, Wrists |
| Sensor outputs | 3-axis accelerometer, 3-axis gyroscope, 3-axis magnetometer, Orientation quaternions |
| Labeling | Metadata (counter, duration, task, date, video size, sensor size, recording version) |
📊 Sample dataset available! For full access, contact us to discuss purchase terms.
Dataset structure
- txt files for sensors data and vidoes
- data - metadata for files
🧩 Like the dataset but need different data? We can collect a custom dataset just for you - learn more about our data collection services here
Similar Datasets:
- Forensic Fingerprint Dataset
- Human Ear Detection Biometric Dataset
- Swimsuit Human Segmentation Dataset
🌐 UniData - your trusted data partner. Unique, accurate, thoroughly collected and annotated data designed to fuel your AI/ML success.
- Downloads last month
- 78