Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 1 was different: 
id: string
name: string
startTime: int64
endTime: int64
sampleRate: int64
devices: list<item: struct<id: string, position: string, connectionId: string>>
snapshots: list<item: struct<time: int64, deviceData: struct<E4:B3:23:AD:5A:B2: list<item: double>, E4:B3:23:AD:24:0E: list<item: double>, E4:B3:23:AD:22:26: list<item: double>, right_hand_virtual: list<item: double>, right_forearm_virtual: list<item: double>, left_hand_virtual: list<item: double>, left_forearm_virtual: list<item: double>>>>
vs
id: string
name: string
startTime: int64
endTime: int64
sampleRate: int64
devices: list<item: struct<id: string, position: string, connectionId: string>>
snapshots: list<item: struct<time: int64, deviceData: struct<E4:B3:23:AD:5A:B2: list<item: double>, E4:B3:23:AD:22:26: list<item: double>, left_hand_virtual: list<item: double>, left_forearm_virtual: list<item: double>, right_hand_virtual: list<item: double>, right_forearm_virtual: list<item: double>, E4:B3:23:AD:24:0E: list<item: double>>>>
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 243, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
                  return next(iter(self.iter(batch_size=n)))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
                  for key, example in iterator:
                                      ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 531, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/table.pxi", line 5039, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              id: string
              name: string
              startTime: int64
              endTime: int64
              sampleRate: int64
              devices: list<item: struct<id: string, position: string, connectionId: string>>
              snapshots: list<item: struct<time: int64, deviceData: struct<E4:B3:23:AD:5A:B2: list<item: double>, E4:B3:23:AD:24:0E: list<item: double>, E4:B3:23:AD:22:26: list<item: double>, right_hand_virtual: list<item: double>, right_forearm_virtual: list<item: double>, left_hand_virtual: list<item: double>, left_forearm_virtual: list<item: double>>>>
              vs
              id: string
              name: string
              startTime: int64
              endTime: int64
              sampleRate: int64
              devices: list<item: struct<id: string, position: string, connectionId: string>>
              snapshots: list<item: struct<time: int64, deviceData: struct<E4:B3:23:AD:5A:B2: list<item: double>, E4:B3:23:AD:22:26: list<item: double>, left_hand_virtual: list<item: double>, left_forearm_virtual: list<item: double>, right_hand_virtual: list<item: double>, right_forearm_virtual: list<item: double>, E4:B3:23:AD:24:0E: list<item: double>>>>

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Robotic Dataset 1,000+ hours

The dataset comprises 1,000+ hours of multimodal robot manipulation data collected from real-world environments, demonstrating manipulation tasks such as cleaning, laundry folding, and dishwashing performed by different robots. It contains synchronized sensor data from seven 9-axis IMU units attached to the robot arms, forearms, and chest, along with head-mounted videos and detailed trajectory recordings. — Get the data

Dataset characteristics:

Characteristic Data
Description 1,000 hours of multimodal recordings of cleaning, laundry folding, and dishwashing activities
Data types Video (head-mounted), 9-axis IMU streams
Tasks Human Activity Recognition, Motion Analysis, Multimodal Learning, Action Segmentation
Hours of recordings 1,000
IMU placements Chest, Upper arms, Forearms, Wrists
Sensor outputs 3-axis accelerometer, 3-axis gyroscope, 3-axis magnetometer, Orientation quaternions
Labeling Metadata (counter, duration, task, date, video size, sensor size, recording version)

📊 Sample dataset available! For full access, contact us to discuss purchase terms.

Dataset structure

  • txt files for sensors data and vidoes
  • data - metadata for files

🧩 Like the dataset but need different data? We can collect a custom dataset just for you - learn more about our data collection services here

Similar Datasets:

  1. Forensic Fingerprint Dataset
  2. Human Ear Detection Biometric Dataset
  3. Swimsuit Human Segmentation Dataset

🌐 UniData - your trusted data partner. Unique, accurate, thoroughly collected and annotated data designed to fuel your AI/ML success.

Downloads last month
78