country_code
string | country
string | station_count
int64 | port_count
int64 | fast_station_share
float64 | fast_port_share
float64 |
|---|---|---|---|---|---|
AD
|
Andorra
| 96
| 259
| 0.0625
| 0.138996
|
AE
|
United Arab Emirates
| 131
| 346
| 0.175573
| 0.410405
|
AF
|
Afghanistan
| 1
| 1
| 0
| 0
|
AL
|
Albania
| 15
| 16
| 0.6
| 0.5625
|
AM
|
Armenia
| 4
| 6
| 0.25
| 0.166667
|
AR
|
Argentina
| 22
| 36
| 0.954545
| 0.972222
|
AT
|
Austria
| 1,282
| 3,474
| 0.176287
| 0.35118
|
AU
|
Australia
| 1,241
| 2,701
| 0.533441
| 0.593114
|
AX
|
Aland Islands
| 3
| 5
| 0.666667
| 0.8
|
AZ
|
Azerbaijan
| 2
| 2
| 0.5
| 0.5
|
BA
|
Bosnia And Herzegovina
| 39
| 52
| 0.153846
| 0.115385
|
BB
|
Barbados
| 1
| 2
| 0
| 0
|
BE
|
Belgium
| 1,245
| 2,849
| 0.128514
| 0.241488
|
BG
|
Bulgaria
| 59
| 84
| 0.508475
| 0.595238
|
BH
|
Bahrain
| 1
| 1
| 0
| 0
|
BR
|
Brazil
| 644
| 922
| 0.402174
| 0.516269
|
BW
|
Botswana
| 1
| 2
| 0
| 0
|
BY
|
Belarus
| 40
| 68
| 0.825
| 0.852941
|
CA
|
Canada
| 16,490
| 20,197
| 0.199212
| 0.270634
|
CH
|
Switzerland
| 878
| 1,998
| 0.215262
| 0.396396
|
CL
|
Chile
| 171
| 186
| 0.409357
| 0.387097
|
CN
|
China
| 12
| 28
| 0.25
| 0.642857
|
CO
|
Colombia
| 61
| 133
| 0.52459
| 0.413534
|
CR
|
Costa Rica
| 171
| 230
| 0.362573
| 0.421739
|
CY
|
Cyprus
| 91
| 157
| 0.142857
| 0.171975
|
CZ
|
Czech Republic
| 555
| 803
| 0.29009
| 0.336239
|
DE
|
Germany
| 23,373
| 46,401
| 0.139434
| 0.215082
|
DK
|
Denmark
| 2,178
| 6,965
| 0.133609
| 0.266762
|
DO
|
Dominican Republic
| 368
| 375
| 0.192935
| 0.197333
|
EC
|
Ecuador
| 21
| 54
| 0
| 0
|
EE
|
Estonia
| 169
| 210
| 0.923077
| 0.895238
|
EG
|
Egypt
| 457
| 1,190
| 0.231947
| 0.255462
|
ES
|
Spain
| 17,825
| 53,762
| 0.354783
| 0.382184
|
ET
|
Ethiopia
| 1
| 1
| 0
| 0
|
FI
|
Finland
| 1,873
| 7,165
| 0.194875
| 0.216748
|
FO
|
Faroe Islands
| 5
| 9
| 0.8
| 0.888889
|
FR
|
France
| 13,820
| 21,932
| 0.12974
| 0.385783
|
GB
|
United Kingdom
| 26,825
| 50,100
| 0.165443
| 0.236627
|
GE
|
Georgia
| 50
| 68
| 0.18
| 0.161765
|
GG
|
Guernsey
| 15
| 30
| 0
| 0
|
GH
|
Ghana
| 3
| 7
| 0
| 0
|
GI
|
Gibraltar
| 7
| 36
| 0.142857
| 0.055556
|
GR
|
Greece
| 277
| 469
| 0.314079
| 0.469083
|
GT
|
Guatemala
| 1
| 1
| 0
| 0
|
HK
|
Hong Kong
| 223
| 1,116
| 0.165919
| 0.176523
|
HR
|
Croatia
| 267
| 482
| 0.535581
| 0.593361
|
HU
|
Hungary
| 864
| 1,847
| 0.224537
| 0.226854
|
ID
|
Indonesia
| 412
| 502
| 0.456311
| 0.48008
|
IE
|
Ireland
| 2,002
| 7,125
| 0.240759
| 0.236211
|
IL
|
Israel
| 295
| 701
| 0.935593
| 0.928673
|
IM
|
Isle Of Man
| 41
| 113
| 0.04878
| 0.026549
|
IN
|
India
| 1,188
| 2,065
| 0.377946
| 0.431961
|
IQ
|
Iraq
| 2
| 2
| 0.5
| 0.5
|
IS
|
Iceland
| 432
| 1,279
| 0.303241
| 0.268178
|
IT
|
Italy
| 10,354
| 22,305
| 0.220977
| 0.288187
|
JE
|
Jersey
| 29
| 85
| 0.206897
| 0.141176
|
JM
|
Jamaica
| 33
| 62
| 0.393939
| 0.419355
|
JO
|
Jordan
| 88
| 177
| 0.431818
| 0.621469
|
JP
|
Japan
| 1,641
| 2,158
| 0.195612
| 0.378128
|
KE
|
Kenya
| 12
| 15
| 0
| 0
|
KG
|
Kyrgyzstan
| 1
| 1
| 0
| 0
|
KH
|
Cambodia
| 22
| 36
| 0.681818
| 0.75
|
KR
|
Korea, Republic Of
| 161
| 1,098
| 1
| 1
|
KZ
|
Kazakhstan
| 3
| 11
| 0.666667
| 0.909091
|
LI
|
Liechtenstein
| 8
| 20
| 0.125
| 0.5
|
LK
|
Sri Lanka
| 58
| 79
| 0.137931
| 0.101266
|
LT
|
Lithuania
| 960
| 993
| 0.415625
| 0.41994
|
LU
|
Luxembourg
| 88
| 188
| 0.056818
| 0.196809
|
LV
|
Latvia
| 83
| 169
| 0.939759
| 0.934911
|
MA
|
Morocco
| 151
| 258
| 0.443709
| 0.492248
|
MC
|
Monaco
| 37
| 37
| 0.027027
| 0.027027
|
MD
|
Moldova, Republic Of
| 34
| 36
| 0.676471
| 0.638889
|
ME
|
Montenegro
| 32
| 58
| 0.1875
| 0.137931
|
MK
|
Macedonia
| 12
| 19
| 0.25
| 0.263158
|
MM
|
Myanmar
| 1
| 1
| 1
| 1
|
MO
|
Macao
| 2
| 8
| 1
| 1
|
MT
|
Malta
| 55
| 56
| 0
| 0
|
MX
|
Mexico
| 579
| 1,365
| 0.069085
| 0.144322
|
MY
|
Malaysia
| 611
| 985
| 0.297872
| 0.411168
|
NAM
|
Namibia
| 1
| 1
| 0
| 0
|
NL
|
Netherlands
| 8,091
| 12,299
| 0.043752
| 0.143995
|
NO
|
Norway
| 4,790
| 29,697
| 0.293946
| 0.380813
|
NP
|
Nepal
| 1
| 1
| 0
| 0
|
NZ
|
New Zealand
| 978
| 2,245
| 0.365031
| 0.374165
|
OM
|
Oman
| 22
| 47
| 0.863636
| 0.87234
|
PA
|
Panama
| 6
| 6
| 0.333333
| 0.333333
|
PE
|
Peru
| 7
| 9
| 0
| 0
|
PH
|
Philippines
| 16
| 25
| 0.4375
| 0.56
|
PK
|
Pakistan
| 3
| 4
| 0
| 0
|
PL
|
Poland
| 461
| 921
| 0.368764
| 0.410423
|
PR
|
Puerto Rico
| 4
| 10
| 0.25
| 0.1
|
PS
|
Palestinian Territory, Occupied
| 3
| 41
| 0.333333
| 0.02439
|
PT
|
Portugal
| 3,696
| 7,765
| 0.473485
| 0.520927
|
PY
|
Paraguay
| 47
| 73
| 0.893617
| 0.876712
|
QA
|
Qatar
| 4
| 18
| 1
| 1
|
RE
|
Reunion
| 8
| 18
| 0.375
| 0.277778
|
RO
|
Romania
| 715
| 1,291
| 0.39021
| 0.55151
|
RS
|
Serbia
| 109
| 196
| 0.440367
| 0.505102
|
RU
|
Russian Federation
| 2,203
| 2,606
| 0.699955
| 0.676132
|
RW
|
Rwanda
| 2
| 8
| 1
| 1
|
End of preview. Expand
in Data Studio
π Global EV Charging Stations & EV Models (2025)
Author: Tarek Masryo
License: CC BY 4.0
Version: v1.0 (2025-09-15)
A clean, analysis-ready snapshot of global EV infrastructure:
- Main stations table: 242,417 rows (charging sites)
- Companion summaries: country + world rollups
- EV models table for enrichment
π¦ Whatβs inside (files)
All CSVs live under data/:
data/charging_station.csvβ charging stations (main table)data/charging_station_ml.csvβ ML-oriented derived table (compact / engineered signals)data/country_summary.csvβ per-country rollup (counts + fast-share)data/world_summary.csvβ extended rollup (counts + power stats + fast/ultra flags)data/ev_models.csvβ EV model specs (make/model/variant + metadata)
Additional repo files:
OCM_CC_BY_4.0.txtβ Open Charge Map attribution textCHANGELOG.md,LICENSE
π§© Why configs?
This repo includes multiple CSVs with different schemas.
Configs make the Hub viewer stable and let you load each table explicitly via load_dataset(repo_id, "<config>").
π Quick start
from datasets import load_dataset, get_dataset_config_names
repo_id = "tarekmasryo/global-ev-infra-dataset"
print(get_dataset_config_names(repo_id))
# Stations
stations = load_dataset(repo_id, "stations")["train"].to_pandas()
# Summaries
country = load_dataset(repo_id, "country_summary")["train"].to_pandas()
world = load_dataset(repo_id, "world_summary")["train"].to_pandas()
# EV models
models = load_dataset(repo_id, "ev_models")["train"].to_pandas()
print(stations.shape, country.shape, world.shape, models.shape)
Tip:
load_dataset(repo_id)will load the first config (stations) if you omit the config name.
π Data dictionary
charging_station.csv (stations table)
Typical columns include:
id,namecity,state_province,country_codelatitude,longitudeports,power_kwpower_class,is_fast_dc
country_summary.csv (country rollup)
Columns:
country_code,countrystation_count,port_countfast_station_share,fast_port_share
world_summary.csv (extended rollup)
Columns (includes country summary + extra indicators):
country_code,countrystation_count,port_countfast_station_count,fast_port_countfast_station_share,fast_port_sharemax_power_kw,median_power_kwdc_fast_station_count,dc_ultra_station_counthas_fast_dc,has_ultra_dc
ev_models.csv (EV models)
Columns:
make,model,variantpowertrain,segment,body_stylefirst_year,origin_country,market_regions
π― Suggested uses
- Compare charging coverage across countries/regions
- Fast-DC vs slow infrastructure analysis
- Geospatial dashboards & planning
- Enrich infra analytics with EV model metadata
π License & attribution
- Charging station data: Contains data Β© Open Charge Map contributors (CC BY 4.0)
- Dataset packaging: CC BY 4.0 β attribution required
- Downloads last month
- 197
Size of downloaded dataset files:
29.3 MB
Size of the auto-converted Parquet files:
14.9 MB
Number of rows:
301,429