Dataset Viewer
Auto-converted to Parquet Duplicate
country_code
string
country
string
station_count
int64
port_count
int64
fast_station_share
float64
fast_port_share
float64
AD
Andorra
96
259
0.0625
0.138996
AE
United Arab Emirates
131
346
0.175573
0.410405
AF
Afghanistan
1
1
0
0
AL
Albania
15
16
0.6
0.5625
AM
Armenia
4
6
0.25
0.166667
AR
Argentina
22
36
0.954545
0.972222
AT
Austria
1,282
3,474
0.176287
0.35118
AU
Australia
1,241
2,701
0.533441
0.593114
AX
Aland Islands
3
5
0.666667
0.8
AZ
Azerbaijan
2
2
0.5
0.5
BA
Bosnia And Herzegovina
39
52
0.153846
0.115385
BB
Barbados
1
2
0
0
BE
Belgium
1,245
2,849
0.128514
0.241488
BG
Bulgaria
59
84
0.508475
0.595238
BH
Bahrain
1
1
0
0
BR
Brazil
644
922
0.402174
0.516269
BW
Botswana
1
2
0
0
BY
Belarus
40
68
0.825
0.852941
CA
Canada
16,490
20,197
0.199212
0.270634
CH
Switzerland
878
1,998
0.215262
0.396396
CL
Chile
171
186
0.409357
0.387097
CN
China
12
28
0.25
0.642857
CO
Colombia
61
133
0.52459
0.413534
CR
Costa Rica
171
230
0.362573
0.421739
CY
Cyprus
91
157
0.142857
0.171975
CZ
Czech Republic
555
803
0.29009
0.336239
DE
Germany
23,373
46,401
0.139434
0.215082
DK
Denmark
2,178
6,965
0.133609
0.266762
DO
Dominican Republic
368
375
0.192935
0.197333
EC
Ecuador
21
54
0
0
EE
Estonia
169
210
0.923077
0.895238
EG
Egypt
457
1,190
0.231947
0.255462
ES
Spain
17,825
53,762
0.354783
0.382184
ET
Ethiopia
1
1
0
0
FI
Finland
1,873
7,165
0.194875
0.216748
FO
Faroe Islands
5
9
0.8
0.888889
FR
France
13,820
21,932
0.12974
0.385783
GB
United Kingdom
26,825
50,100
0.165443
0.236627
GE
Georgia
50
68
0.18
0.161765
GG
Guernsey
15
30
0
0
GH
Ghana
3
7
0
0
GI
Gibraltar
7
36
0.142857
0.055556
GR
Greece
277
469
0.314079
0.469083
GT
Guatemala
1
1
0
0
HK
Hong Kong
223
1,116
0.165919
0.176523
HR
Croatia
267
482
0.535581
0.593361
HU
Hungary
864
1,847
0.224537
0.226854
ID
Indonesia
412
502
0.456311
0.48008
IE
Ireland
2,002
7,125
0.240759
0.236211
IL
Israel
295
701
0.935593
0.928673
IM
Isle Of Man
41
113
0.04878
0.026549
IN
India
1,188
2,065
0.377946
0.431961
IQ
Iraq
2
2
0.5
0.5
IS
Iceland
432
1,279
0.303241
0.268178
IT
Italy
10,354
22,305
0.220977
0.288187
JE
Jersey
29
85
0.206897
0.141176
JM
Jamaica
33
62
0.393939
0.419355
JO
Jordan
88
177
0.431818
0.621469
JP
Japan
1,641
2,158
0.195612
0.378128
KE
Kenya
12
15
0
0
KG
Kyrgyzstan
1
1
0
0
KH
Cambodia
22
36
0.681818
0.75
KR
Korea, Republic Of
161
1,098
1
1
KZ
Kazakhstan
3
11
0.666667
0.909091
LI
Liechtenstein
8
20
0.125
0.5
LK
Sri Lanka
58
79
0.137931
0.101266
LT
Lithuania
960
993
0.415625
0.41994
LU
Luxembourg
88
188
0.056818
0.196809
LV
Latvia
83
169
0.939759
0.934911
MA
Morocco
151
258
0.443709
0.492248
MC
Monaco
37
37
0.027027
0.027027
MD
Moldova, Republic Of
34
36
0.676471
0.638889
ME
Montenegro
32
58
0.1875
0.137931
MK
Macedonia
12
19
0.25
0.263158
MM
Myanmar
1
1
1
1
MO
Macao
2
8
1
1
MT
Malta
55
56
0
0
MX
Mexico
579
1,365
0.069085
0.144322
MY
Malaysia
611
985
0.297872
0.411168
NAM
Namibia
1
1
0
0
NL
Netherlands
8,091
12,299
0.043752
0.143995
NO
Norway
4,790
29,697
0.293946
0.380813
NP
Nepal
1
1
0
0
NZ
New Zealand
978
2,245
0.365031
0.374165
OM
Oman
22
47
0.863636
0.87234
PA
Panama
6
6
0.333333
0.333333
PE
Peru
7
9
0
0
PH
Philippines
16
25
0.4375
0.56
PK
Pakistan
3
4
0
0
PL
Poland
461
921
0.368764
0.410423
PR
Puerto Rico
4
10
0.25
0.1
PS
Palestinian Territory, Occupied
3
41
0.333333
0.02439
PT
Portugal
3,696
7,765
0.473485
0.520927
PY
Paraguay
47
73
0.893617
0.876712
QA
Qatar
4
18
1
1
RE
Reunion
8
18
0.375
0.277778
RO
Romania
715
1,291
0.39021
0.55151
RS
Serbia
109
196
0.440367
0.505102
RU
Russian Federation
2,203
2,606
0.699955
0.676132
RW
Rwanda
2
8
1
1
End of preview. Expand in Data Studio

🌍 Global EV Charging Stations & EV Models (2025)

Author: Tarek Masryo
License: CC BY 4.0
Version: v1.0 (2025-09-15)

A clean, analysis-ready snapshot of global EV infrastructure:

  • Main stations table: 242,417 rows (charging sites)
  • Companion summaries: country + world rollups
  • EV models table for enrichment

πŸ“¦ What’s inside (files)

All CSVs live under data/:

  • data/charging_station.csv β€” charging stations (main table)
  • data/charging_station_ml.csv β€” ML-oriented derived table (compact / engineered signals)
  • data/country_summary.csv β€” per-country rollup (counts + fast-share)
  • data/world_summary.csv β€” extended rollup (counts + power stats + fast/ultra flags)
  • data/ev_models.csv β€” EV model specs (make/model/variant + metadata)

Additional repo files:

  • OCM_CC_BY_4.0.txt β€” Open Charge Map attribution text
  • CHANGELOG.md, LICENSE

🧩 Why configs?

This repo includes multiple CSVs with different schemas.
Configs make the Hub viewer stable and let you load each table explicitly via load_dataset(repo_id, "<config>").


πŸš€ Quick start

from datasets import load_dataset, get_dataset_config_names

repo_id = "tarekmasryo/global-ev-infra-dataset"
print(get_dataset_config_names(repo_id))

# Stations
stations = load_dataset(repo_id, "stations")["train"].to_pandas()

# Summaries
country = load_dataset(repo_id, "country_summary")["train"].to_pandas()
world   = load_dataset(repo_id, "world_summary")["train"].to_pandas()

# EV models
models  = load_dataset(repo_id, "ev_models")["train"].to_pandas()

print(stations.shape, country.shape, world.shape, models.shape)

Tip: load_dataset(repo_id) will load the first config (stations) if you omit the config name.


πŸ“š Data dictionary

charging_station.csv (stations table)

Typical columns include:

  • id, name
  • city, state_province, country_code
  • latitude, longitude
  • ports, power_kw
  • power_class, is_fast_dc

country_summary.csv (country rollup)

Columns:

  • country_code, country
  • station_count, port_count
  • fast_station_share, fast_port_share

world_summary.csv (extended rollup)

Columns (includes country summary + extra indicators):

  • country_code, country
  • station_count, port_count
  • fast_station_count, fast_port_count
  • fast_station_share, fast_port_share
  • max_power_kw, median_power_kw
  • dc_fast_station_count, dc_ultra_station_count
  • has_fast_dc, has_ultra_dc

ev_models.csv (EV models)

Columns:

  • make, model, variant
  • powertrain, segment, body_style
  • first_year, origin_country, market_regions

🎯 Suggested uses

  • Compare charging coverage across countries/regions
  • Fast-DC vs slow infrastructure analysis
  • Geospatial dashboards & planning
  • Enrich infra analytics with EV model metadata

πŸ“œ License & attribution

  • Charging station data: Contains data Β© Open Charge Map contributors (CC BY 4.0)
  • Dataset packaging: CC BY 4.0 β€” attribution required
Downloads last month
197

Space using tarekmasryo/global-ev-infra-dataset 1