paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/very-deep-convolutional-networks-for-large
|
Very Deep Convolutional Networks for Large-Scale Image Recognition
|
1409.1556
|
http://arxiv.org/abs/1409.1556v6
|
http://arxiv.org/pdf/1409.1556v6.pdf
|
https://github.com/RuoyuGuo/Visualising-Image-Classification-Models-and-Saliency-Maps
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/exploring-modern-gpu-memory-system-design
|
Exploring Modern GPU Memory System Design Challenges through Accurate Modeling
|
1810.07269
|
http://arxiv.org/abs/1810.07269v1
|
http://arxiv.org/pdf/1810.07269v1.pdf
|
https://github.com/prdalmia/gpgpu-sim-tlb
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-simple-exponential-family-framework-for
|
A Simple Exponential Family Framework for Zero-Shot Learning
|
1707.08040
|
http://arxiv.org/abs/1707.08040v3
|
http://arxiv.org/pdf/1707.08040v3.pdf
|
https://github.com/vkverma01/Zero-Shot
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/from-word-embeddings-to-item-recommendation
|
From Word Embeddings to Item Recommendation
|
1601.01356
|
http://arxiv.org/abs/1601.01356v3
|
http://arxiv.org/pdf/1601.01356v3.pdf
|
https://github.com/mgulcin/DL_Rec
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/190807906
|
PCRNet: Point Cloud Registration Network using PointNet Encoding
|
1908.07906
|
https://arxiv.org/abs/1908.07906v2
|
https://arxiv.org/pdf/1908.07906v2.pdf
|
https://github.com/vinits5/pcrnet_pytorch
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/flavio-a-python-package-for-flavour-and
|
flavio: a Python package for flavour and precision phenomenology in the Standard Model and beyond
|
1810.08132
|
http://arxiv.org/abs/1810.08132v1
|
http://arxiv.org/pdf/1810.08132v1.pdf
|
https://github.com/smelli/smelli
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/nvisii-a-scriptable-tool-for-photorealistic
|
NViSII: A Scriptable Tool for Photorealistic Image Generation
|
2105.13962
|
https://arxiv.org/abs/2105.13962v1
|
https://arxiv.org/pdf/2105.13962v1.pdf
|
https://github.com/owl-project/ViSII
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/very-deep-convolutional-networks-for-text
|
Very Deep Convolutional Networks for Text Classification
|
1606.01781
|
http://arxiv.org/abs/1606.01781v2
|
http://arxiv.org/pdf/1606.01781v2.pdf
|
https://github.com/nithishkaviyan/Sentiment-Analysis-of-Yelp-Reviews
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/estimating-seal-pup-production-in-the
|
Estimating seal pup production in the Greenland Sea using Bayesian hierarchical modeling
|
1808.09254
|
https://arxiv.org/abs/1808.09254v2
|
https://arxiv.org/pdf/1808.09254v2.pdf
|
https://github.com/PointProcess/SealCoxProcess-JRSSC-code
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/democratizing-contrastive-language-image-pre
|
Democratizing Contrastive Language-Image Pre-training: A CLIP Benchmark of Data, Model, and Supervision
|
2203.05796
|
https://arxiv.org/abs/2203.05796v1
|
https://arxiv.org/pdf/2203.05796v1.pdf
|
https://github.com/sense-gvt/declip
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/pose-normalized-image-generation-for-person
|
Pose-Normalized Image Generation for Person Re-identification
|
1712.02225
|
http://arxiv.org/abs/1712.02225v6
|
http://arxiv.org/pdf/1712.02225v6.pdf
|
https://github.com/NVlabs/DG-Net
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/simulating-content-consistent-vehicle
|
Simulating Content Consistent Vehicle Datasets with Attribute Descent
|
1912.08855
|
https://arxiv.org/abs/1912.08855v2
|
https://arxiv.org/pdf/1912.08855v2.pdf
|
https://github.com/yorkeyao/VehicleX
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/robust-group-synchronization-via-cycle-edge
|
Robust Group Synchronization via Cycle-Edge Message Passing
|
1912.11347
|
https://arxiv.org/abs/1912.11347v3
|
https://arxiv.org/pdf/1912.11347v3.pdf
|
https://github.com/yunpeng-shi/CEMP
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/partial-fc-training-10-million-identities-on
|
Partial FC: Training 10 Million Identities on a Single Machine
|
2010.05222
|
https://arxiv.org/abs/2010.05222v2
|
https://arxiv.org/pdf/2010.05222v2.pdf
|
https://github.com/JDAI-CV/fast-reid
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/tab2know-building-a-knowledge-base-from
|
Tab2Know: Building a Knowledge Base from Tables in Scientific Papers
|
2107.13306
|
https://arxiv.org/abs/2107.13306v1
|
https://arxiv.org/pdf/2107.13306v1.pdf
|
https://github.com/karmaresearch/tab2know
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/inference-and-forecasting-for-continuous-time
|
Inference and forecasting for continuous-time integer-valued trawl processes
|
2107.03674
|
https://arxiv.org/abs/2107.03674v3
|
https://arxiv.org/pdf/2107.03674v3.pdf
|
https://github.com/mbennedsen/Likelihood-based-IVT
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/mintrec2-0-a-large-scale-benchmark-dataset
|
MIntRec2.0: A Large-scale Benchmark Dataset for Multimodal Intent Recognition and Out-of-scope Detection in Conversations
|
2403.10943
|
https://arxiv.org/abs/2403.10943v4
|
https://arxiv.org/pdf/2403.10943v4.pdf
|
https://github.com/thuiar/mintrec2.0
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/faultnet-a-deep-convolutional-neural-network
|
FaultNet: A Deep Convolutional Neural Network for bearing fault classification
|
2010.02146
|
https://arxiv.org/abs/2010.02146v2
|
https://arxiv.org/pdf/2010.02146v2.pdf
|
https://github.com/BaratiLab/FaultNet
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/physics-informed-neural-networks-for-power
|
Physics-Informed Neural Networks for Power Systems
|
1911.03737
|
https://arxiv.org/abs/1911.03737v3
|
https://arxiv.org/pdf/1911.03737v3.pdf
|
https://github.com/gmisy/Phycics-informed-NN-for-Power-Systems
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/proximal-policy-optimization-algorithms
|
Proximal Policy Optimization Algorithms
|
1707.06347
|
http://arxiv.org/abs/1707.06347v2
|
http://arxiv.org/pdf/1707.06347v2.pdf
|
https://github.com/jfpettit/flare
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/susy-les-houches-accord-2
|
SUSY Les Houches Accord 2
|
0801.0045
|
http://arxiv.org/abs/0801.0045v3
|
http://arxiv.org/pdf/0801.0045v3.pdf
|
https://github.com/misho104/yaslha
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-guide-to-convolution-arithmetic-for-deep
|
A guide to convolution arithmetic for deep learning
|
1603.07285
|
http://arxiv.org/abs/1603.07285v2
|
http://arxiv.org/pdf/1603.07285v2.pdf
|
https://github.com/marbleton/FPGA_MNIST
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/don-t-stop-pretraining-adapt-language-models
|
Don't Stop Pretraining: Adapt Language Models to Domains and Tasks
|
2004.10964
|
https://arxiv.org/abs/2004.10964v3
|
https://arxiv.org/pdf/2004.10964v3.pdf
|
https://github.com/allenai/dont-stop-pretraining
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/hinglishnlp-fine-tuned-language-models-for
|
HinglishNLP: Fine-tuned Language Models for Hinglish Sentiment Detection
|
2008.09820
|
https://arxiv.org/abs/2008.09820v1
|
https://arxiv.org/pdf/2008.09820v1.pdf
|
https://github.com/NirantK/Hinglish
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-low-cost-flexible-and-portable-volumetric
|
A Low-Cost, Flexible and Portable Volumetric Capturing System
|
1909.01207
|
https://arxiv.org/abs/1909.01207v1
|
https://arxiv.org/pdf/1909.01207v1.pdf
|
https://github.com/VCL3D/VolumetricCapture
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/deep-soft-procrustes-for-markerless
|
Deep Soft Procrustes for Markerless Volumetric Sensor Alignment
|
2003.10176
|
https://arxiv.org/abs/2003.10176v1
|
https://arxiv.org/pdf/2003.10176v1.pdf
|
https://github.com/VCL3D/VolumetricCapture
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/conversations-with-search-engines
|
Conversations with Search Engines: SERP-based Conversational Response Generation
|
2004.14162
|
https://arxiv.org/abs/2004.14162v2
|
https://arxiv.org/pdf/2004.14162v2.pdf
|
https://github.com/PengjieRen/CaSE-1.0
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/boilerplate-removal-using-a-neural-sequence
|
Boilerplate Removal using a Neural Sequence Labeling Model
|
2004.14294
|
https://arxiv.org/abs/2004.14294v1
|
https://arxiv.org/pdf/2004.14294v1.pdf
|
https://github.com/mrjleo/boilernet
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/lifelong-learning-in-evolving-graphs-with
|
Lifelong Learning on Evolving Graphs Under the Constraints of Imbalanced Classes and New Classes
|
2112.10558
|
https://arxiv.org/abs/2112.10558v2
|
https://arxiv.org/pdf/2112.10558v2.pdf
|
https://github.com/lgalke/lifelong-learning
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/towards-efficient-covid-19-ct-annotation-a
|
Towards Data-Efficient Learning: A Benchmark for COVID-19 CT Lung and Infection Segmentation
|
2004.12537
|
https://arxiv.org/abs/2004.12537v2
|
https://arxiv.org/pdf/2004.12537v2.pdf
|
https://github.com/JunMa11/COVID-19-CT-Seg-Benchmark
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/jack-the-reader-a-machine-reading-framework
|
Jack the Reader - A Machine Reading Framework
|
1806.08727
|
http://arxiv.org/abs/1806.08727v1
|
http://arxiv.org/pdf/1806.08727v1.pdf
|
https://github.com/uclnlp/jack
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/making-neural-qa-as-simple-as-possible-but
|
Making Neural QA as Simple as Possible but not Simpler
|
1703.04816
|
http://arxiv.org/abs/1703.04816v3
|
http://arxiv.org/pdf/1703.04816v3.pdf
|
https://github.com/uclnlp/jack
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/a-disentangling-invertible-interpretation
|
A Disentangling Invertible Interpretation Network for Explaining Latent Representations
|
2004.13166
|
https://arxiv.org/abs/2004.13166v1
|
https://arxiv.org/pdf/2004.13166v1.pdf
|
https://github.com/CompVis/iin
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/weakly-supervised-open-retrieval
|
Weakly-Supervised Open-Retrieval Conversational Question Answering
|
2103.02537
|
https://arxiv.org/abs/2103.02537v1
|
https://arxiv.org/pdf/2103.02537v1.pdf
|
https://github.com/prdwb/ws-orconvqa
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/aggregate-hardware-impairments-over-mixed-rf
|
Aggregate Hardware Impairments Over Mixed RF/FSO Relaying Systems With Outdated CSI
|
1902.03177
|
http://arxiv.org/abs/1902.03177v1
|
http://arxiv.org/pdf/1902.03177v1.pdf
|
https://github.com/ebalti/Malaga-Distribution
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/conditional-generative-adversarial-nets
|
Conditional Generative Adversarial Nets
|
1411.1784
|
https://arxiv.org/abs/1411.1784v1
|
https://arxiv.org/pdf/1411.1784v1.pdf
|
https://github.com/bhiziroglu/Conditional-Generative-Adversarial-Network
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/inverse-kinematics-for-serial-kinematic
|
Inverse Kinematics for Serial Kinematic Chains via Sum of Squares Optimization
|
1909.09318
|
https://arxiv.org/abs/1909.09318v2
|
https://arxiv.org/pdf/1909.09318v2.pdf
|
https://github.com/utiasSTARS/sos-ik
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/how-low-is-too-low-a-computational
|
How Low is Too Low? A Computational Perspective on Extremely Low-Resource Languages
|
2105.14515
|
https://arxiv.org/abs/2105.14515v1
|
https://arxiv.org/pdf/2105.14515v1.pdf
|
https://github.com/cdli-gh/Semi-Supervised-NMT-for-Sumerian-English
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/voxlingua107-a-dataset-for-spoken-language-1
|
VoxLingua107: a Dataset for Spoken Language Recognition
|
2011.12998
|
https://arxiv.org/abs/2011.12998v1
|
https://arxiv.org/pdf/2011.12998v1.pdf
|
https://github.com/rush-d/spoken-language-identification
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/warpgan-automatic-caricature-generation
|
WarpGAN: Automatic Caricature Generation
|
1811.10100
|
http://arxiv.org/abs/1811.10100v3
|
http://arxiv.org/pdf/1811.10100v3.pdf
|
https://github.com/ronny3050/AdvFaces
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/advfaces-adversarial-face-synthesis
|
AdvFaces: Adversarial Face Synthesis
|
1908.05008
|
https://arxiv.org/abs/1908.05008v1
|
https://arxiv.org/pdf/1908.05008v1.pdf
|
https://github.com/ronny3050/AdvFaces
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/segan-speech-enhancement-generative
|
SEGAN: Speech Enhancement Generative Adversarial Network
|
1703.09452
|
http://arxiv.org/abs/1703.09452v3
|
http://arxiv.org/pdf/1703.09452v3.pdf
|
https://github.com/usimarit/TiramisuASR
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/simple-scalable-and-stable-variational-deep
|
Simple, Scalable, and Stable Variational Deep Clustering
|
2005.08047
|
https://arxiv.org/abs/2005.08047v2
|
https://arxiv.org/pdf/2005.08047v2.pdf
|
https://github.com/king/s3vdc
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/a-neural-algorithm-of-artistic-style
|
A Neural Algorithm of Artistic Style
|
1508.06576
|
http://arxiv.org/abs/1508.06576v2
|
http://arxiv.org/pdf/1508.06576v2.pdf
|
https://github.com/kanishk16/Image-Style-Transfer
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-mathematical-formalization-of-hierarchical
|
A Mathematical Formalization of Hierarchical Temporal Memory's Spatial Pooler
|
1601.06116
|
http://arxiv.org/abs/1601.06116v3
|
http://arxiv.org/pdf/1601.06116v3.pdf
|
https://github.com/mrkrynmdsco/htm-python
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/density-encoding-enables-resource-efficient
|
Density Encoding Enables Resource-Efficient Randomly Connected Neural Networks
|
1909.09153
|
https://arxiv.org/abs/1909.09153v2
|
https://arxiv.org/pdf/1909.09153v2.pdf
|
https://github.com/sweetwenwen/Stochastic-computing-based-neural-network-accelerator
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-distance-preserving-matrix-sketch
|
A Distance-preserving Matrix Sketch
|
2009.03979
|
https://arxiv.org/abs/2009.03979v3
|
https://arxiv.org/pdf/2009.03979v3.pdf
|
https://github.com/hrluo/DistancePreservingMatrixSketch
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/neural-collaborative-filtering
|
Neural Collaborative Filtering
|
1708.05031
|
http://arxiv.org/abs/1708.05031v2
|
http://arxiv.org/pdf/1708.05031v2.pdf
|
https://github.com/EdoardoPona/Neural-Collaborative-Filtering
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/jobskape-a-framework-for-generating-synthetic
|
JOBSKAPE: A Framework for Generating Synthetic Job Postings to Enhance Skill Matching
|
2402.03242
|
https://arxiv.org/abs/2402.03242v1
|
https://arxiv.org/pdf/2402.03242v1.pdf
|
https://github.com/magantoine/jobskape
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/practical-graph-isomorphism-ii
|
Practical graph isomorphism, II
|
1301.1493
|
http://arxiv.org/abs/1301.1493v1
|
http://arxiv.org/pdf/1301.1493v1.pdf
|
https://github.com/Mith13/Graphs-isomorphism
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/line-large-scale-information-network
|
LINE: Large-scale Information Network Embedding
|
1503.03578
|
http://arxiv.org/abs/1503.03578v1
|
http://arxiv.org/pdf/1503.03578v1.pdf
|
https://github.com/2myeonggyu/Graph-Embedding
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/imagenet-classification-with-deep
|
ImageNet Classification with Deep Convolutional Neural Networks
| null |
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
|
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
|
https://github.com/mindspore-courses/heads-on-mindspore/blob/main/1-best-practice/models/alexnet.py
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/fully-convolutional-networks-for-semantic-1
|
Fully Convolutional Networks for Semantic Segmentation
|
1411.4038
|
http://arxiv.org/abs/1411.4038v2
|
http://arxiv.org/pdf/1411.4038v2.pdf
|
https://github.com/muramasa8191/DeepLearning
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/instance-based-counterfactual-explanations
|
Instance-based Counterfactual Explanations for Time Series Classification
|
2009.13211
|
https://arxiv.org/abs/2009.13211v2
|
https://arxiv.org/pdf/2009.13211v2.pdf
|
https://github.com/e-delaney/Instance-Based_CFE_TSC
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
|
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
|
1810.04805
|
https://arxiv.org/abs/1810.04805v2
|
https://arxiv.org/pdf/1810.04805v2.pdf
|
https://github.com/Holldean/BERT-Pruning
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/structured-pruning-of-large-language-models
|
Structured Pruning of Large Language Models
|
1910.04732
|
https://arxiv.org/abs/1910.04732v2
|
https://arxiv.org/pdf/1910.04732v2.pdf
|
https://github.com/Holldean/BERT-Pruning
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/pretraining-based-natural-language-generation
|
Pretraining-Based Natural Language Generation for Text Summarization
|
1902.09243
|
http://arxiv.org/abs/1902.09243v2
|
http://arxiv.org/pdf/1902.09243v2.pdf
|
https://github.com/praveenjune17/BERT_text_summarisation
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
|
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
|
1810.04805
|
https://arxiv.org/abs/1810.04805v2
|
https://arxiv.org/pdf/1810.04805v2.pdf
|
https://github.com/Zehui127/SQUAD_BERT
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/sdf-srn-learning-signed-distance-3d-object
|
SDF-SRN: Learning Signed Distance 3D Object Reconstruction from Static Images
|
2010.10505
|
https://arxiv.org/abs/2010.10505v1
|
https://arxiv.org/pdf/2010.10505v1.pdf
|
https://github.com/chenhsuanlin/signed-distance-SRN
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/multifit-efficient-multi-lingual-language
|
MultiFiT: Efficient Multi-lingual Language Model Fine-tuning
|
1909.04761
|
https://arxiv.org/abs/1909.04761v2
|
https://arxiv.org/pdf/1909.04761v2.pdf
|
https://github.com/n-waves/multifit
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/rtfm-generalising-to-novel-environment
|
RTFM: Generalising to Novel Environment Dynamics via Reading
|
1910.08210
|
https://arxiv.org/abs/1910.08210v6
|
https://arxiv.org/pdf/1910.08210v6.pdf
|
https://github.com/facebookresearch/RTFM
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/what-are-people-asking-about-covid-19-a
|
What Are People Asking About COVID-19? A Question Classification Dataset
|
2005.12522
|
https://arxiv.org/abs/2005.12522v3
|
https://arxiv.org/pdf/2005.12522v3.pdf
|
https://github.com/JerryWei03/COVID-Q
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/gnn3dmot-graph-neural-network-for-3d-multi
|
GNN3DMOT: Graph Neural Network for 3D Multi-Object Tracking With 2D-3D Multi-Feature Learning
| null |
http://openaccess.thecvf.com/content_CVPR_2020/html/Weng_GNN3DMOT_Graph_Neural_Network_for_3D_Multi-Object_Tracking_With_2D-3D_CVPR_2020_paper.html
|
http://openaccess.thecvf.com/content_CVPR_2020/papers/Weng_GNN3DMOT_Graph_Neural_Network_for_3D_Multi-Object_Tracking_With_2D-3D_CVPR_2020_paper.pdf
|
https://github.com/xinshuoweng/GNN3DMOT
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/mpnet-masked-and-permuted-pre-training-for
|
MPNet: Masked and Permuted Pre-training for Language Understanding
|
2004.09297
|
https://arxiv.org/abs/2004.09297v2
|
https://arxiv.org/pdf/2004.09297v2.pdf
|
https://github.com/JunnYu/paddle-mpnet
| false
| false
| false
|
paddle
|
https://paperswithcode.com/paper/logical-inference-for-counting-on-semi
|
Logical Inference for Counting on Semi-structured Tables
|
2204.07803
|
https://arxiv.org/abs/2204.07803v2
|
https://arxiv.org/pdf/2204.07803v2.pdf
|
https://github.com/ynklab/sst_count
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/contrastive-learning-with-hard-negative
|
Contrastive Learning with Hard Negative Entities for Entity Set Expansion
|
2204.07789
|
https://arxiv.org/abs/2204.07789v2
|
https://arxiv.org/pdf/2204.07789v2.pdf
|
https://github.com/geekjuruo/probexpan
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/reordering-examples-helps-during-priming
|
Reordering Examples Helps during Priming-based Few-Shot Learning
|
2106.01751
|
https://arxiv.org/abs/2106.01751v1
|
https://arxiv.org/pdf/2106.01751v1.pdf
|
https://github.com/SawanKumar28/pero
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/conversational-neuro-symbolic-commonsense
|
Conversational Neuro-Symbolic Commonsense Reasoning
|
2006.10022
|
https://arxiv.org/abs/2006.10022v3
|
https://arxiv.org/pdf/2006.10022v3.pdf
|
https://github.com/ForoughA/CORGI
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/depth-aware-video-frame-interpolation
|
Depth-Aware Video Frame Interpolation
|
1904.00830
|
http://arxiv.org/abs/1904.00830v1
|
http://arxiv.org/pdf/1904.00830v1.pdf
|
https://github.com/BurguerJohn/Dain-App
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/planning-to-explore-via-self-supervised-world
|
Planning to Explore via Self-Supervised World Models
|
2005.05960
|
https://arxiv.org/abs/2005.05960v2
|
https://arxiv.org/pdf/2005.05960v2.pdf
|
https://github.com/ramanans1/plan2explore
| true
| false
| false
|
tf
|
https://paperswithcode.com/paper/quota-based-debiasing-can-decrease
|
Quota-based debiasing can decrease representation of already underrepresented groups
|
2006.07647
|
https://arxiv.org/abs/2006.07647v1
|
https://arxiv.org/pdf/2006.07647v1.pdf
|
https://github.com/ibsmirnov/debiasing
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/efficientdet-scalable-and-efficient-object
|
EfficientDet: Scalable and Efficient Object Detection
|
1911.09070
|
https://arxiv.org/abs/1911.09070v7
|
https://arxiv.org/pdf/1911.09070v7.pdf
|
https://github.com/JensSettelmeier/EfficientDet-DeepSORT-Tracker
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/selection-bias-tracking-and-detailed-subset
|
Selection Bias Tracking and Detailed Subset Comparison for High-Dimensional Data
|
1906.07625
|
https://arxiv.org/abs/1906.07625v2
|
https://arxiv.org/pdf/1906.07625v2.pdf
|
https://github.com/VACLab/CadenceEVA
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/simple-online-and-realtime-tracking-with-a
|
Simple Online and Realtime Tracking with a Deep Association Metric
|
1703.07402
|
http://arxiv.org/abs/1703.07402v1
|
http://arxiv.org/pdf/1703.07402v1.pdf
|
https://github.com/JensSettelmeier/EfficientDet-DeepSORT-Tracker
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/pseudo-labeling-and-confirmation-bias-in-deep
|
Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learning
|
1908.02983
|
https://arxiv.org/abs/1908.02983v5
|
https://arxiv.org/pdf/1908.02983v5.pdf
|
https://github.com/EricArazo/PseudoLabeling
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/selective-kernel-networks
|
Selective Kernel Networks
|
1903.06586
|
http://arxiv.org/abs/1903.06586v2
|
http://arxiv.org/pdf/1903.06586v2.pdf
|
https://github.com/implus/PytorchInsight
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/post-hoc-methods-for-debiasing-neural
|
Intra-Processing Methods for Debiasing Neural Networks
|
2006.08564
|
https://arxiv.org/abs/2006.08564v2
|
https://arxiv.org/pdf/2006.08564v2.pdf
|
https://github.com/realityengines/post_hoc_debiasing
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/deep-packet-a-novel-approach-for-encrypted
|
Deep Packet: A Novel Approach For Encrypted Traffic Classification Using Deep Learning
|
1709.02656
|
http://arxiv.org/abs/1709.02656v3
|
http://arxiv.org/pdf/1709.02656v3.pdf
|
https://github.com/mhwong2007/Deep-Packet
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/robust-differentially-private-training-of
|
On the effect of normalization layers on Differentially Private training of deep Neural networks
|
2006.10919
|
https://arxiv.org/abs/2006.10919v2
|
https://arxiv.org/pdf/2006.10919v2.pdf
|
https://github.com/uds-lsv/SIDP
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/neural-combinatorial-optimization-with
|
Neural Combinatorial Optimization with Reinforcement Learning
|
1611.09940
|
http://arxiv.org/abs/1611.09940v3
|
http://arxiv.org/pdf/1611.09940v3.pdf
|
https://github.com/Rintarooo/TSP_DRL_PointerNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/pointer-networks
|
Pointer Networks
|
1506.03134
|
http://arxiv.org/abs/1506.03134v2
|
http://arxiv.org/pdf/1506.03134v2.pdf
|
https://github.com/Rintarooo/TSP_DRL_PointerNet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/oops-predicting-unintentional-action-in-video
|
Oops! Predicting Unintentional Action in Video
|
1911.11206
|
https://arxiv.org/abs/1911.11206v1
|
https://arxiv.org/pdf/1911.11206v1.pdf
|
https://github.com/cvlab-columbia/oops
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/mining-persistent-activity-in-continually
|
Mining Persistent Activity in Continually Evolving Networks
|
2006.15410
|
https://arxiv.org/abs/2006.15410v1
|
https://arxiv.org/pdf/2006.15410v1.pdf
|
https://github.com/GemsLab/PENminer
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/attention-is-all-you-need
|
Attention Is All You Need
|
1706.03762
|
https://arxiv.org/abs/1706.03762v7
|
https://arxiv.org/pdf/1706.03762v7.pdf
|
https://github.com/AssafSinger94/sigmorphon-2020-inflection
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/modeling-relational-data-with-graph
|
Modeling Relational Data with Graph Convolutional Networks
|
1703.06103
|
http://arxiv.org/abs/1703.06103v4
|
http://arxiv.org/pdf/1703.06103v4.pdf
|
https://github.com/INK-USC/MHGRN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/kagnet-knowledge-aware-graph-networks-for
|
KagNet: Knowledge-Aware Graph Networks for Commonsense Reasoning
|
1909.02151
|
https://arxiv.org/abs/1909.02151v1
|
https://arxiv.org/pdf/1909.02151v1.pdf
|
https://github.com/INK-USC/MHGRN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/toward-the-first-quantum-simulation-with
|
Toward the first quantum simulation with quantum speedup
|
1711.10980
|
http://arxiv.org/abs/1711.10980v1
|
http://arxiv.org/pdf/1711.10980v1.pdf
|
https://github.com/njross/simcount
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/port-hamiltonian-approach-to-neural-network
|
Port-Hamiltonian Approach to Neural Network Training
|
1909.02702
|
https://arxiv.org/abs/1909.02702v1
|
https://arxiv.org/pdf/1909.02702v1.pdf
|
https://github.com/esclear/ph-nn
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/the-shapley-value-of-coalition-of-variables
|
The Shapley Value of coalition of variables provides better explanations
|
2103.13342
|
https://arxiv.org/abs/2103.13342v3
|
https://arxiv.org/pdf/2103.13342v3.pdf
|
https://github.com/salimamoukou/acv00
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/gspn-generative-shape-proposal-network-for-3d
|
GSPN: Generative Shape Proposal Network for 3D Instance Segmentation in Point Cloud
|
1812.03320
|
http://arxiv.org/abs/1812.03320v1
|
http://arxiv.org/pdf/1812.03320v1.pdf
|
https://github.com/ericyi/GSPN
| true
| false
| true
|
tf
|
https://paperswithcode.com/paper/yolact-better-real-time-instance-segmentation
|
YOLACT++: Better Real-time Instance Segmentation
|
1912.06218
|
https://arxiv.org/abs/1912.06218v2
|
https://arxiv.org/pdf/1912.06218v2.pdf
|
https://github.com/2023-MindSpore-1/ms-code-217/tree/main/Yolact%2B%2B
| false
| false
| false
|
mindspore
|
https://paperswithcode.com/paper/feature-pyramid-networks-for-object-detection
|
Feature Pyramid Networks for Object Detection
|
1612.03144
|
http://arxiv.org/abs/1612.03144v2
|
http://arxiv.org/pdf/1612.03144v2.pdf
|
https://github.com/daxiapazi/faster-rcnn
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/yolo9000-better-faster-stronger
|
YOLO9000: Better, Faster, Stronger
|
1612.08242
|
http://arxiv.org/abs/1612.08242v1
|
http://arxiv.org/pdf/1612.08242v1.pdf
|
https://github.com/TheClub4/car-detection-yolov2
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/image-style-transfer-using-convolutional
|
Image Style Transfer Using Convolutional Neural Networks
| null |
http://openaccess.thecvf.com/content_cvpr_2016/html/Gatys_Image_Style_Transfer_CVPR_2016_paper.html
|
http://openaccess.thecvf.com/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
|
https://github.com/gsurma/style_transfer/blob/master/style-transfer.ipynb
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/pic-permutation-invariant-critic-for-multi
|
PIC: Permutation Invariant Critic for Multi-Agent Deep Reinforcement Learning
|
1911.00025
|
https://arxiv.org/abs/1911.00025v1
|
https://arxiv.org/pdf/1911.00025v1.pdf
|
https://github.com/IouJenLiu/PIC
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/efficient-graph-similarity-computation-with
|
Efficient Graph Similarity Computation with Alignment Regularization
|
2406.14929
|
https://arxiv.org/abs/2406.14929v1
|
https://arxiv.org/pdf/2406.14929v1.pdf
|
https://github.com/jhuow/eric
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/validations-and-corrections-of-the-sfd-and
|
Validations and Corrections of the SFD and Planck Reddening Maps Based on LAMOST and Gaia Data
|
2204.01521
|
https://arxiv.org/abs/2204.01521v3
|
https://arxiv.org/pdf/2204.01521v3.pdf
|
https://github.com/qy-sunyang/extinction-maps-correction
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/fake-review-detection-using-behavioral-and
|
Fake Review Detection Using Behavioral and Contextual Features
|
2003.00807
|
https://arxiv.org/abs/2003.00807v1
|
https://arxiv.org/pdf/2003.00807v1.pdf
|
https://github.com/JayKumarr/Fake-Review-Detection
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/assd-attentive-single-shot-multibox-detector
|
ASSD: Attentive Single Shot Multibox Detector
|
1909.12456
|
https://arxiv.org/abs/1909.12456v1
|
https://arxiv.org/pdf/1909.12456v1.pdf
|
https://github.com/yijingru/ASSD-Pytorch
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/deep-inside-convolutional-networks
|
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
|
1312.6034
|
http://arxiv.org/abs/1312.6034v2
|
http://arxiv.org/pdf/1312.6034v2.pdf
|
https://github.com/RuoyuGuo/Visualising-Image-Classification-Models-and-Saliency-Maps
| false
| false
| true
|
tf
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.