The Dataset Viewer has been disabled on this dataset.
Flex Index of MSMarco Passage using ANCE
Description
This artifact represents the retrieval index of the MSMarco Passage collection produced by the ANCE model (more info here).
Usage
The following code snippete shows how to use this artifact to perform a dense retrieval experiment:
import pyterrier as pt
import pyterrier_dr
from pyterrier.measures import *
# Load the artifact
index = pt.Artifact.from_hf('ntonellotto/msmarco-passage.ance.flex')
# Load the query encoder (must be the same used to create the artifact)
model = pyterrier_dr.Ance()
# Load the dataset
dataset = pt.get_dataset('msmarco_passage')
# Run the PyTerrier experiment
pt.Experiment(
[model >> index],
dataset.get_topics('test-2019'),
dataset.get_qrels('test-2019'),
eval_metrics=[RR@10, Recall(rel=2)@100, Recall@100, nDCG@10, "mrt"],
names=["Dense Retrieval"]
)
You should get something like:
| name | RR@10 | R(rel=2)@100 | R@100 | nDCG@10 | mrt |
|---|---|---|---|---|---|
| Dense Retrieval | 0.976744 | 0.607269 | 0.514744 | 0.718238 | 280.014161 |
Reproduction
Generating the data
The data has been generated using the following code snippet:
import torch
import pyterrier as pt
import pyterrier_dr
# Select the available Torch's backend
if torch.backends.mps.is_available():
device = torch.device("mps")
elif torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
print(f"Using device: {device}")
# Create the encoder model
tct = pyterrier_dr.Ance(device=device, batch_size=256)
# Create the destination index folder
index = pyterrier_dr.FlexIndex("./msmarco-passage.ance.flex")
# Indexing
(tct >> index).index(pt.get_dataset("msmarco_passage").get_corpus_iter())
print(f"Indexed {len(index)} documents")
Uploading the data
To upload the index to Hugging Face, use the following code snippet (the dataset sheet will be created automatically):
import pyterrier as pt
# Load the artifact from disk
artifact = pt.Artifact.load("./msmarco-passage.ance.flex")
# Upload the artifact to HF
artifact.to_hf('ntonellotto/msmarco-passage.ance.flex')
Metadata
{
"type": "dense_index",
"format": "flex",
"vec_size": 768,
"doc_count": 8841823
}
- Downloads last month
- 11