Dataset Viewer
Auto-converted to Parquet Duplicate
datetime
stringdate
2015-01-01 00:00:00
2024-12-31 23:00:00
pm25
float64
15
926
pm10
float64
30
990
no2
float64
5
84.9
co
float64
0.05
6.74
so2
float64
0.05
38.1
o3
float64
1
112
temp
float64
10
45
rh
float64
5
100
wind
float64
0.1
29.9
rain
float64
0
352
2015-01-01 00:00:00
150.84967
257.31099
32.664554
1.204211
4.816183
1.364593
17.926895
42.05844
0.1
1.08512
2015-01-01 01:00:00
132.37012
254.495468
31.878915
0.86083
1.937702
1
16.655569
37.960572
0.1
0
2015-01-01 02:00:00
157.994518
256.41939
28.320158
0.074682
4.197653
2.51694
17.283748
37.4122
0.1
0
2015-01-01 03:00:00
173.358215
269.40669
33.000651
2.563948
7.383085
1
34.383131
17.713272
0.1
0.393723
2015-01-01 04:00:00
201.753827
335.956343
30.99789
1.32662
2.140768
1
18.198381
39.903303
0.1
0
2015-01-01 05:00:00
173.020377
325.035318
21.101363
0.05
7.517151
8.157385
27.103821
27.436891
0.1
1.95109
2015-01-01 06:00:00
157.847514
312.123626
17.474514
0.05
6.812459
9.1145
23.380647
36.364266
0.1
0
2015-01-01 07:00:00
191.487311
304.781942
56.421169
0.672927
7.098136
7.92928
32.823532
24.585318
0.1
0
2015-01-01 08:00:00
162.741032
275.258499
69.815683
1.931346
9.989686
1
32.701308
28.53202
0.1
1.026535
2015-01-01 09:00:00
161.196497
254.957748
63.549439
3.341
10.513959
1
33.116299
26.888239
0.1
0
2015-01-01 10:00:00
97.053694
225.077232
24.624288
0.05
5.320727
5.859969
37.203207
25.527383
0.1
0
2015-01-01 11:00:00
86.805483
206.279185
26.737608
1.111501
5.533947
6.312
41.169223
14.343143
0.576116
1.503866
2015-01-01 12:00:00
93.169116
183.454904
25.383729
0.05
7.044532
54.268186
36.119499
19.651922
0.1
0
2015-01-01 13:00:00
68.051577
174.581097
16.177278
0.05
4.091756
50.643632
34.17465
22.003387
0.1
0
2015-01-01 14:00:00
108.278265
172.999662
16.760457
0.05
6.399149
47.507626
37.611378
15.061202
0.1
0.593969
2015-01-01 15:00:00
55.519091
82.330368
28.353599
1.636556
5.813524
38.154423
32.098525
31.118617
0.1
1.313107
2015-01-01 16:00:00
101.338602
169.340705
32.825344
0.05
6.661774
42.115781
20.240727
43.670906
0.1
0
2015-01-01 17:00:00
70.230113
168.23084
24.993404
0.05
5.573377
5.590921
19.120792
41.687584
0.1
5.440339
2015-01-01 18:00:00
89.063829
182.334813
44.344804
0.39708
9.865106
7.089183
26.357388
31.207512
0.1
0
2015-01-01 19:00:00
125.396049
211.150356
51.960069
0.398936
10.307744
4.515125
20.50159
34.211999
0.1
0
2015-01-01 20:00:00
147.681889
230.178842
61.681554
2.666466
7.206272
1
19.261387
38.203921
0.1
7.705464
2015-01-01 21:00:00
168.431557
257.781126
29.632297
0.05
5.004924
7.039469
20.006937
33.439538
0.1
0.163748
2015-01-01 22:00:00
140.351839
262.583454
26.374047
0.05
5.168046
10.28137
25.369054
27.384199
0.1
1.359196
2015-01-01 23:00:00
160.818876
295.728357
26.433964
0.05
9.19969
5.218893
14.388485
37.674589
0.1
1.704867
2015-01-02 00:00:00
131.37705
257.597178
31.513319
1.461658
3.333528
2.055443
21.479241
30.082419
1.271369
0.809964
2015-01-02 01:00:00
151.370647
264.505224
39.899139
1.709678
2.910099
1.907902
26.039451
29.417954
0.1
1.549268
2015-01-02 02:00:00
120.016926
257.040592
17.37496
2.467294
5.360332
1
32.155568
22.938777
0.1
0.261481
2015-01-02 03:00:00
133.777226
249.988698
31.438344
0.139372
3.948355
6.404615
26.581268
28.184801
0.1
0
2015-01-02 04:00:00
215.778236
338.681604
44.775065
3.03683
8.678855
1
21.338868
36.175064
0.1
0
2015-01-02 05:00:00
169.82822
323.446352
28.438275
1.801639
5.896249
1
26.742118
32.228288
0.207671
1.259258
2015-01-02 06:00:00
152.996341
310.090661
30.923516
0.801052
5.731279
5.06024
34.509134
23.567662
0.1
0
2015-01-02 07:00:00
184.544287
301.784335
64.453588
1.744622
14.162485
3.869678
33.90129
24.430448
0.1
0
2015-01-02 08:00:00
165.352806
275.833872
61.979388
3.451846
9.336983
1
30.325939
31.908399
0.1
1.256691
2015-01-02 09:00:00
122.782886
244.371916
61.585843
1.602368
13.382603
2.302694
34.190547
22.120664
0.1
0
2015-01-02 10:00:00
119.377901
228.93866
28.076256
0.515183
4.963622
5.353691
40.100639
13.159527
0.1
0
2015-01-02 11:00:00
151.855227
214.51663
36.551926
2.09612
5.270127
1
36.571508
21.6035
0.1
0
2015-01-02 12:00:00
140.887265
196.669785
29.583778
1.357696
6.606715
39.90678
35.135301
24.277778
0.1
0
2015-01-02 13:00:00
113.655027
176.431721
38.540912
2.02815
9.199907
38.263828
34.058194
25.657161
1.145211
0
2015-01-02 14:00:00
63.632071
159.890181
17.816252
0.05
3.419381
40.659236
22.834076
40.482436
0.1
0
2015-01-02 15:00:00
45.577957
82.376686
24.999274
1.517399
6.822174
36.888994
20.571923
37.849366
0.1
2.475633
2015-01-02 16:00:00
58.578329
160.909728
25.576908
0.05
4.667005
45.124293
27.924943
27.275884
0.1
1.028878
2015-01-02 17:00:00
79.150069
165.806184
23.963021
2.027274
5.969856
1
28.878355
30.594874
0.1
0.135037
2015-01-02 18:00:00
158.110085
198.913186
45.734116
0.05
11.174325
9.291583
19.152881
36.73883
0.481874
0
2015-01-02 19:00:00
59.064267
193.614092
50.75003
1.683899
13.463841
5.699739
33.853845
22.448785
0.1
0
2015-01-02 20:00:00
117.584928
227.327325
39.176155
0.471009
8.179247
7.975595
27.206372
26.876561
0.1
0
2015-01-02 21:00:00
153.806541
255.574959
26.639229
2.104727
4.639277
1
25.598133
27.079241
0.1
0
2015-01-02 22:00:00
175.735198
272.833133
26.19158
0.87137
4.952044
1.00823
16.257595
41.996167
0.1
0
2015-01-02 23:00:00
110.989
279.954631
21.946493
1.36633
8.302943
1.916946
17.497285
37.626986
2.737987
2.23915
2015-01-03 00:00:00
119.271821
251.263364
25.988866
2.916674
4.055053
1
23.535587
26.682843
1.183922
1.76328
2015-01-03 01:00:00
171.997181
267.557643
26.67508
0.05
8.276042
5.604974
19.369149
33.919903
0.1
0
2015-01-03 02:00:00
185.752881
269.640579
23.335525
1.655193
4.373566
1.207639
24.928756
27.325844
0.1
0
2015-01-03 03:00:00
139.130646
258.759042
23.261357
0.05
4.911907
8.637435
29.185871
25.161638
0.1
1.502774
2015-01-03 04:00:00
181.454541
337.488311
32.986654
3.280803
3.469379
1
21.646406
31.864574
0.1
0
2015-01-03 05:00:00
155.532778
316.630028
27.347807
0.384605
4.28334
3.512873
27.317298
26.646376
0.423662
0
2015-01-03 06:00:00
164.262213
305.566871
33.782557
2.097166
0.859769
1
31.159978
26.721107
0.1
0
2015-01-03 07:00:00
166.7961
293.509491
67.857117
2.19818
12.235477
1.150654
32.44804
23.433716
0.1
0
2015-01-03 08:00:00
201.220454
285.624466
66.846629
2.189192
13.874466
1
35.02795
18.225283
0.1
0
2015-01-03 09:00:00
183.488831
258.731254
72.374025
4.328565
12.406079
1
30.56781
31.375972
0.1
2.287508
2015-01-03 10:00:00
122.13376
225.10533
29.982364
1.079793
6.052619
5.371666
38.455659
17.182328
0.227182
0
2015-01-03 11:00:00
109.152321
202.692855
32.684163
1.713754
7.52549
1.309066
40.083972
16.303809
0.1
0.754601
2015-01-03 12:00:00
92.225859
183.153428
24.371918
0.05
6.929679
53.278505
40.676237
14.756484
0.1
2.992089
2015-01-03 13:00:00
106.298221
172.869512
29.540061
0.160972
9.657361
41.874642
30.119508
30.46835
0.1
0.447768
2015-01-03 14:00:00
101.296371
167.172832
39.888977
1.795652
8.165699
38.936507
31.62109
24.736765
0.1
2.188383
2015-01-03 15:00:00
58.812306
89.053504
34.668068
2.817739
3.276923
33.060068
32.439066
27.946075
0.1
0
2015-01-03 16:00:00
120.592688
173.9817
28.389779
0.68736
4.666825
39.340373
24.59141
28.077769
0.1
1.392413
2015-01-03 17:00:00
140.297164
180.290488
26.999413
0.427285
10.134533
3.388323
27.109985
29.751919
0.1
0
2015-01-03 18:00:00
91.218478
183.206729
52.819665
0.621132
8.21747
1.140883
16.83517
44.310125
0.1
2.183014
2015-01-03 19:00:00
93.669905
191.458804
54.639675
1.826931
6.585973
1
11.123048
46.739236
0.344812
2.543111
2015-01-03 20:00:00
106.817915
220.622123
46.511222
0.436105
8.075942
7.371929
22.72386
31.049279
0.1
0.888527
2015-01-03 21:00:00
150.875752
257.474405
23.878113
1.556846
6.906591
3.214471
27.208425
24.941746
0.331801
0
2015-01-03 22:00:00
165.447168
278.87122
23.127835
0.05
1.951057
3.160182
10
50.397731
0.1
3.392913
2015-01-03 23:00:00
158.939564
294.482988
21.010412
0.05
5.53078
8.829472
18.368907
37.302456
0.1
0
2015-01-04 00:00:00
111.862295
246.94346
22.904468
1.044541
5.565585
1.476186
17.433279
38.723464
0.1
0
2015-01-04 01:00:00
127.784678
252.353942
28.297848
0.05
7.060944
4.643447
14.663047
42.582664
1.159728
2.02874
2015-01-04 02:00:00
96.713799
249.766006
28.293138
1.872764
6.496023
1
25.894674
28.377955
0.1
0
2015-01-04 03:00:00
93.886304
251.360643
12.282465
0.05
4.207869
17.235449
23.030665
34.716559
0.1
1.40062
2015-01-04 04:00:00
198.758394
335.942268
44.564927
1.28724
6.733051
1
15.285738
45.876631
0.1
3.624898
2015-01-04 05:00:00
188.115343
322.383871
38.260184
3.166562
6.24084
1
27.064515
28.043126
0.1
1.241344
2015-01-04 06:00:00
148.990862
305.369858
25.639251
0.05
6.576013
8.666969
28.098831
32.135509
0.1
0
2015-01-04 07:00:00
170.172367
296.328977
57.349603
0.05
9.595186
7.848089
27.237137
32.437249
0.1
0.059512
2015-01-04 08:00:00
151.950583
269.96205
61.8673
1.872265
10.929401
2.208569
35.451409
21.581466
0.702222
0
2015-01-04 09:00:00
141.279541
246.363689
74.432863
3.412817
12.883375
1
29.6007
31.888975
0.1
2.130961
2015-01-04 10:00:00
147.6076
237.850036
32.613348
0.05
5.239649
12.268026
40.63501
20.14417
0.1
0
2015-01-04 11:00:00
72.12404
200.692751
21.664462
0.395793
5.900552
6.411387
43.129003
15.748291
0.399129
0
2015-01-04 12:00:00
115.973191
190.90735
21.837791
0.05
4.973232
41.52962
22.041345
44.000289
0.1
0
2015-01-04 13:00:00
81.32972
168.881064
28.347264
1.702617
7.641768
37.819651
30.063933
28.724664
0.1
1.265864
2015-01-04 14:00:00
71.605849
154.964715
37.383217
1.564814
4.119646
39.665895
31.252231
28.245731
0.1
4.02041
2015-01-04 15:00:00
16.781116
76.504625
13.980162
0.05
5.594423
51.272519
28.895148
28.792642
0.1
2.376787
2015-01-04 16:00:00
102.206391
162.570421
17.791741
0.05
7.223788
52.895075
31.976175
25.411397
0.1
2.217407
2015-01-04 17:00:00
117.858186
177.115869
30.728958
0.087257
8.000318
6.442009
25.606731
30.835275
0.1
0
2015-01-04 18:00:00
103.195648
184.477522
52.882181
1.354361
10.011841
1.759636
18.210227
37.335171
0.1
4.32651
2015-01-04 19:00:00
115.189641
207.37449
52.666965
1.216599
9.928643
4.491376
23.128932
34.615681
0.1
0.38818
2015-01-04 20:00:00
126.102303
219.579635
59.817214
3.174351
11.726702
1
17.824466
36.819317
1.04812
0
2015-01-04 21:00:00
166.519074
260.782424
23.774404
0.704674
5.760628
1
14.205441
40.787797
0.1
0
2015-01-04 22:00:00
160.296106
277.78565
36.203979
2.34939
8.662992
1
20.230937
30.279974
0.1
0.486679
2015-01-04 23:00:00
159.194576
297.206252
17.553342
0.05
5.363058
8.737344
16.878067
39.490309
0.1
0.895417
2015-01-05 00:00:00
176.071946
266.802784
23.789868
0.05
4.840404
8.206477
10
50.1962
0.1
0
2015-01-05 01:00:00
138.281299
253.268419
39.764768
3.641615
5.02926
1
32.832504
16.271833
0.1
1.52083
2015-01-05 02:00:00
162.518379
259.831561
28.866641
2.090719
4.998603
1
19.224966
41.314436
0.1
0.053772
2015-01-05 03:00:00
106.878922
245.27914
28.265559
0.735947
3.471043
1.357184
22.812478
38.279826
0.1
1.145166
End of preview. Expand in Data Studio

Air Quality & Meteorology Dataset

Dataset Description

This corpus contains 87 672 hourly records (10 variables + timestamp) that realistically emulate air‑quality and local‑weather conditions for Kolkata, West Bengal, India.
Patterns, trends and extreme events (Diwali fireworks, COVID‑19 lockdown, cyclones, heat‑waves) are calibrated to published CPCB, IMD and peer‑reviewed summaries, making the data suitable for benchmarking, forecasting, policy‑impact simulations and educational research.

The data are suitable for time‑series forecasting, machine learning, environmental research, and air‑quality policy simulation while containing no real personal or proprietary information.


File Information

File Records Approx. Size
air_quality.csv 87 672 (hourly) ~ 16 MB

(Rows = 10 years × 365 days (+ leap) × 24 h ≈ 87.7 k)


Columns & Descriptions

Column Unit / Range Description
datetime ISO 8601 (IST) Hour start timestamp (UTC + 05:30).
Pollutants
pm25 µg m⁻³ (15–600) Particulate Matter < 2.5 µm. Seasonally highest in winter; Diwali + COVID effects embedded.
pm10 µg m⁻³ (30–900) Particulate Matter < 10 µm (≈ 1.8 × PM₂.₅).
no2 µg m⁻³ (5–80) Nitrogen dioxide, traffic proxy. Morning/evening rush‑hour peaks.
co mg m⁻³ (0.05–4) Carbon monoxide from incomplete combustion.
so2 µg m⁻³ (1–20) Sulphur dioxide, low in Kolkata; slight fireworks/cyclone dips.
o3 µg m⁻³ (5–120) Surface ozone; midday photochemical peaks and decade‑long upward trend.
Meteorology
temp °C (12–45) Dry‑bulb air temperature. Heat‑wave days reach > 41 °C.
rh % (20–100) Relative humidity. Near‑saturation in monsoon nights.
wind m s⁻¹ (0.1–30) 10 m wind speed. Cyclones push gusts > 20 m s⁻¹.
rain mm h⁻¹ (0–150) Hourly precipitation. Heavy bursts during monsoon and cyclones.

Usage

This dataset is ideal for:

  • Environmental Research – Analyse seasonal/diurnal pollution dynamics or meteorological drivers.
  • Machine‑Learning Benchmarks – Train forecasting, anomaly‑detection or imputation models on multivariate, event‑rich time‑series.
  • Policy / “What‑If” Simulation – evaluate NCAP / BS‑VI scenarios without privacy constraints.
  • Extreme‑Event Studies – Stress‑test models on Diwali spikes, cyclone wash‑outs, or heat‑wave ozone episodes.
  • Teaching & Exploration – Demonstrate correlation analysis, time‑series decomposition, ARIMA/LSTM modelling, etc.

Example Workflows

Task Example
Forecasting Predict next‑day PM₂.₅ using past 72 h pollutants + weather.
Classification Flag hours exceeding national PM₂.₅ 24‑h standard (60 µg m⁻³).
Clustering Segment days by pollution profile (clean‑monsoon, moderate, Diwali‑spike).
Causal Inference Quantify lockdown‑attributable reduction in NO₂ via difference‑in‑differences.
Fairness Compare model accuracy across seasons or meteorological regimes.

Data Pre‑processing Tips

  • Timestamp Indexing – Set datetime as Pandas DateTimeIndex for resampling (df.resample('D').mean()), lag features, etc.
  • Log/Box‑Cox – Stabilise heavy‑tailed pollutant distributions before regression.
  • Feature Engineering – Add sine/cosine hour‑of‑day and month‑of‑year terms to capture periodicity.
  • Outlier Handling – Retain extreme Diwali and cyclone values for robustness tests rather than trimming.
  • Train/Test Split – Use rolling or time‑based splits (e.g., train 2015‑21, validate 2022, test 2023‑24) to respect temporal order.

License

Released under the Creative Commons CC0 1.0 Universal license – free for research, educational, or commercial use.
The data are algorithmically generated and do not contain any real measurements or personal information.


References

  1. Guttikunda, S. K., & Jawahar, P. (2020). “Exceedances and trends of particulate matter (PM₂.₅) in five Indian megacities.” Atmospheric Environment, 222, 117125.
  2. Centre for Science and Environment (CSE). (2016). Night-time air turns toxic in Kolkata winter: Rapid assessment briefing note. New Delhi: CSE.
  3. IQAir. (2020). World Air Quality Report 2019 – City profile: Kolkata, India.
  4. Biswas, T., Saha, D., et al. (2022). “Strict lockdown measures reduced PM₂.₅ concentrations during the COVID-19 pandemic in Kolkata, India.” Sustainable Water Resources Management, 8 (2), 45.
  5. Times of India. (28 Oct 2019). “Diwali brings Kolkata AQI down from ‘moderate’ to ‘poor’.”
  6. Chaudhari, S., & Sudhakar, S. (2013). “Ambient air quality during Diwali festival over an Indian metro.” Aerosol and Air Quality Research, 13 (4), 1133–1144.
  7. Bhattacharya, S. (2020). “West Bengal faces the brunt of Cyclone Amphan.” Mongabay-India (News article, 26 May 2020).
  8. Ghosh, A., & Pal, R. (2023). “Effect of the 2022 heatwave on ambient ozone levels in Kolkata, India.” Pre-print, ResearchGate.
  9. Times of India. (2 Jan 2025). “Winter 2024-25 records Kolkata’s cleanest PM₂.₅ levels since 2019.”
  10. Greenpeace India. (2023). NO₂ pollution and health risks in seven major Indian cities: Status update 2022. Bengaluru: Greenpeace South Asia.
  11. Banerjee, A., & Srivastava, A. K. (2016). “Trace-element composition of PM₂.₅ and PM₁₀ from Kolkata during different seasons.” Atmospheric Pollution Research, 7 (5), 885-894.
  12. Mukherjee, M., & Sarkar, S. (2019). “Evaluating variability, transport and periodicity of particulate matter over Kolkata, India.” Environmental Monitoring and Assessment, 191, 541.

Acknowledgements

The dataset was built from public literature: CPCB reports, IMD climate normals, peer‑reviewed studies on Kolkata air quality (2013‑2024), and official event timelines.
If you use this dataset, please cite “Synthetic Kolkata Air‑Quality Time‑Series (2015–2024)” and link back to this repository.

Downloads last month
74