Datasets:

Modalities:
Text
Formats:
csv
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet Duplicate
Tweet_ID;Sarcastic;Sentiment
stringlengths
30
32
1239697251389321218;No;Neutral
1233487704198873089;Yes;Positive
1270578381994803202;Yes;Positive
1315382374844665444;No;Negative
1262364421294297088;No;Negative
1258717493633462276;No;Neutral
1243523541842173953;No;Neutral
1235261630046441473;Yes;Neutral
1330825141203456002;Yes;Positive
1258831601846423554;Yes;Neutral
1309455273195692032;Yes;Positive
1267233970153979905;No;Neutral
1246456651441373185;Yes;Positive
1291115696726986753;No;Negative
1239890955702075393;No;Neutral
1254216911799357440;No;Positive
1307105529848791041;Yes;Positive
1254063931552923654;No;Neutral
1269700725220802560;No;Negative
1283162578886238208;No;Positive
1244249194598187008;No;Neutral
1261018974738841605;Yes;Neutral
1274821915132203009;No;Positive
1267573054756044801;No;Neutral
1331448039609929730;No;Positive
1263493766599630854;Yes;Positive
1229350415751426050;No;Neutral
1252318272135012353;No;Positive
1263214076295032832;No;Positive
1273383272878411778;No;Negative
1256282033418092556;No;Neutral
1243631012904677378;Yes;Neutral
1321156323866804224;No;Negative
1234471299109486594;No;Neutral
1300008558180925440;No;Negative
1286384330105905153;Yes;Positive
1388656367295670031;Yes;Positive
1264898438652665857;No;Negative
1282299684699201542;No;Positive
1362469241770743359;No;Neutral
1241352412520165376;No;Neutral
1232784230482153476;Yes;Neutral
1230889685616078854;No;Neutral
1228403711388585985;No;Neutral
1275795736496672769;No;Positive
1253814757133557760;Yes;Neutral
1237108879076532226;Yes;Neutral
1241093561556312065;No;Neutral
1273723763381751814;No;Negative
1261421906013478912;Yes;Positive
1301048542824407040;Yes;Positive
1272881600670433290;No;Negative
1239795728207265792;No;Positive
1300054457976266753;No;Negative
1273733743119908864;Yes;Positive
1264934471708618754;No;Neutral
1242429085864939521;No;Neutral
1260992464317493251;No;Neutral
1297906781734285316;Yes;Positive
1263952138025254912;No;Negative
1247069023713591296;No;Positive
1261481700321787908;No;Neutral
1254044829757177856;Yes;Neutral
1240649050619367426;No;Neutral
1242858160467193857;No;Neutral
1295176131868536834;Yes;Positive
1328674463899127808;No;Negative
1262074869765877763;Yes;Positive
1251604039080513538;No;Negative
1269288597078892544;No;Negative
1235638153358094336;No;Negative
1254597337399394305;No;Neutral
1247932349708406787;No;Negative
1229123734944047104;No;Neutral
1332751930489867101;No;Negative
1236976659120754688;No;Neutral
1294280318216802307;No;Negative
1272590260938182661;No;Negative
1261897641455161345;No;Neutral
1243963079311974400;Yes;Positive
1239667627032588288;No;Neutral
1237288305907073024;No;Positive
1376679501794238974;No;Negative
1224554874882478083;Yes;Positive
1222149068295753728;Yes;Positive
1221155919008092160;Yes;Neutral
1232014980289044481;No;Positive
1247271715216003073;Yes;Positive
1240278077835444231;Yes;Positive
1301267065802760199;No;Positive
1292288022118105088;No;Positive
1287680037806841856;No;Positive
1284473913628557312;Yes;Positive
1260270717062569984;No;Negative
1239507050222288898;Yes;Positive
1250369344191815680;Yes;Positive
1250244239230996482;No;Neutral
1310210813526003719;Yes;Positive
1266095597465059330;No;Neutral
1246527904110034944;No;Neutral
End of preview. Expand in Data Studio

ARACOVID19-SSD: ARABIC COVID-19 SENTIMENT AND SARCASM DETECTION DATASET

Description

AraCOVID19-SSD is a manually annotated Arabic COVID-19 sarcasm and sentiment detection dataset containing 5,162 tweets. The labels used in the dataset are the following:

AraCOVID19-SSD Sarcasm and Sentiment Labels

Examples

Examples of the instances from the dataset are provided in the below Table:

Example tweets and their annotations from AraCOVID19-SSD

Statistics

The statistics for the dataset are provided in the below Table:

Statistical distribution of Sarcasm and Sentiment labels

Citations

If you want to use the dataset please cite the following arXiv paper:

@article{ameur2021aracovid19,
  title={Aracovid19-ssd: Arabic covid-19 sentiment and sarcasm detection dataset},
  author={Ameur, Mohamed Seghir Hadj and Aliane, Hassina},
  journal={arXiv preprint arXiv:2110.01948},
  year={2021}
}

Contacts:

For all questions please contact [email protected]

Downloads last month
11