TestEval-LR / README.md
lqdunxgx2005's picture
Update README.md
9be36d5 verified
---
license: mit
language:
- code
tags:
- rust
- go
- julia
- code
- test-generation
- low-resource-languages
- unit-tests
- benchmark
pretty_name: TestEval-LR
size_categories:
- 1K<n<10K
# task_categories:
# - text-generation
# - code-generation
# task_ids:
# - unit-test-generation
dataset_summary: |
TestEval-LR is a benchmark dataset for evaluating unit test generation capabilities of models on low-resource programming languages (Rust, Go, and Julia). Each sample provides a focal function's source code and metadata for generating idiomatic test code.
---
# πŸ“š TestEval-LR: Unit Test Generation Benchmark for Low-Resource Languages
TestEval-LR is a **validation benchmark** designed to measure how well models can generate unit tests for **Low-Resource Programming Languages (LRPLs)** β€” specifically **Rust**, **Go**, and **Julia**.
## πŸ“Œ Purpose
Evaluate how well a model can generate test code, given a focal function's source code and context.
## πŸ“‚ Dataset Structure
Each example contains:
- **function_name**: Name of the focal function.
- **focal_code**: Raw source code of the function (used for context).
- **function_component**: Detail information about the function like function signature,arguments definition,line range,...
- **file_content**: Content of file have the focal function.
- **file_path**: Relative path to the file in the repository.
### Dataset Size
The dataset contains **~372–412 samples** per language, depending on the source repository.
## πŸ“ Prompt Example for Test Generation
**Suffix syntax for each language:**
suffix syntax is to put in the end of the prompt ( after wrap in the chat template if need ) to generate the expected test function and avoid hallucination
```plaintext
"Rust": "#[test]\nfn test_{function_name}() {"
"Julia": "@testset \"{function_name} Tests\" begin"
"Go": "func Test{function_name_with_uppercase_first_letter}("
```
This dataset uses a structured prompt format for three programming languages: **Rust**, **Julia**, and **Go**.
Each language has two variants:
- **`instruct`** β†’ Full instruction prompt including explicit guidance to generate a unit test for a given function.
- **`base`** β†’ Minimal version that only contains the function code and a short comment reminding to check correctness.
### Structure
```python
prompts = {
"Rust": {
"instruct": (
"{function_code}\n"
"Generate Rust unittest for {function_name} function in module {file_path}:\n"
),
"base": (
"{function_code}\n"
"// Check the correctness for {function_name} function in Rust\n"
),
},
"Julia": {
"instruct": (
"{function_code}\n"
"Generate Julia unittest for {function_name} function in module {file_path}:\n"
),
"base": (
"{function_code}\n"
"# Check the correctness for {function_name} function in Julia\n"
),
},
"Go": {
"instruct": (
"{function_code}\n"
"Generate Go unittest for {function_name} function in module {file_path}:\n"
),
"base": (
"{function_code}\n"
"// Check the correctness for {function_name} function in Go\n"
),
},
}