Datasets:
Modalities:
Text
Formats:
parquet
Size:
10K - 100K
Tags:
bilingual
parallel-corpus
machine-translation
text-generation
text-classification
religious-text
License:
metadata
dataset_info:
features:
- name: en
dtype: string
- name: th
dtype: string
splits:
- name: train
num_bytes: 15352952
num_examples: 31102
download_size: 6074585
dataset_size: 15352952
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: unlicense
task_categories:
- translation
- text-generation
- text-classification
language:
- en
- th
tags:
- bilingual
- parallel-corpus
- machine-translation
- text-generation
- text-classification
- religious-text
- English
- Thai
- Bible
- King-James-Version
- nlp
- sequence-to-sequence
- translation-en-th
pretty_name: Bible Thai English Translation
size_categories:
- 10K<n<100K
bible-en-th
Overview
The bible-en-th dataset is a bilingual corpus containing English and Thai translations of the Bible, specifically the King James Version (KJV) translated into Thai. This dataset is designed for various natural language processing tasks, including translation, language modeling, and text analysis.
- Languages: English (en) and Thai (th)
- Total Rows: 31,102
Dataset Structure
The dataset consists of two main features:
- en: English text from the Bible.
- th: Corresponding Thai text from the King James Version.
Sample Data
The dataset includes the following sections of the Bible:
Click to show/hide Bible sections
- Genesis
- Exodus
- Leviticus
- Numbers
- Deuteronomy
- Joshua
- Judges
- Ruth
- 1 Samuel
- 2 Samuel
- 1 Kings
- 2 Kings
- 1 Chronicles
- 2 Chronicles
- Ezra
- Nehemiah
- Esther
- Job
- Psalms
- Proverbs
- Ecclesiastes
- Song of Solomon
- Isaiah
- Jeremiah
- Lamentations
- Ezekiel
- Daniel
- Hosea
- Joel
- Amos
- Obadiah
- Jonah
- Micah
- Nahum
- Habakkuk
- Zephaniah
- Haggai
- Zechariah
- Malachi
Installation
To access this dataset, you can load it using the Hugging Face datasets library:
from datasets import load_dataset
dataset = load_dataset("hf_datasets/bible-en-th")
Streaming the Dataset
For efficient memory usage, especially when working with large datasets, you can stream the dataset:
from datasets import load_dataset
streamed_dataset = load_dataset("hf_datasets/bible-en-th", streaming=True)
for example in streamed_dataset["train"]:
print(example["en"])
Streaming is particularly useful when you want to process the dataset sequentially without loading it entirely into memory.
License
This dataset is released as unlicensed.