Datasets:
Tasks:
Multiple Choice
Modalities:
Text
Formats:
parquet
Sub-tasks:
multiple-choice-qa
Languages:
Egyptian Arabic
Size:
100K - 1M
License:
metadata
annotations_creators:
- machine-generated
language:
- arz
license:
- other
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- ehovy/race
task_categories:
- multiple-choice
task_ids:
- multiple-choice-qa
paperswithcode_id: race
pretty_name: RACE
dataset_info:
- config_name: high
features:
- name: example_id
dtype: string
- name: article
dtype: string
- name: answer
dtype: string
- name: question
dtype: string
- name: options
sequence: string
splits:
- name: train
num_bytes: 125987908
num_examples: 47136
- name: train_latin
num_bytes: 107057635
num_examples: 56556
- name: test
num_bytes: 7656551
num_examples: 2911
- name: test_latin
num_bytes: 5964966
num_examples: 3192
- name: validation
num_bytes: 7427116
num_examples: 2823
- name: validation_latin
num_bytes: 5846740
num_examples: 3126
download_size: 93875773
dataset_size: 259940916
- config_name: high_test
features:
- name: article
dtype: string
- name: problems
list:
- name: answer
dtype: string
- name: options
sequence: string
- name: question
dtype: string
splits:
- name: test
num_bytes: 3122475
num_examples: 962
- name: test_latin
num_bytes: 2353536
num_examples: 1009
download_size: 3203997
dataset_size: 5476011
- config_name: middle
features:
- name: example_id
dtype: string
- name: article
dtype: string
- name: answer
dtype: string
- name: question
dtype: string
- name: options
sequence: string
splits:
- name: train
num_bytes: 35083982
num_examples: 21262
- name: train_latin
num_bytes: 28630455
num_examples: 24734
- name: test
num_bytes: 2209022
num_examples: 1335
- name: test_latin
num_bytes: 1639110
num_examples: 1384
- name: validation
num_bytes: 2194587
num_examples: 1355
- name: validation_ltn
num_bytes: 1618485
num_examples: 1394
download_size: 23334452
dataset_size: 71375641
- config_name: middle_test
features:
- name: article
dtype: string
- name: problems
list:
- name: answer
dtype: string
- name: options
sequence: string
- name: question
dtype: string
splits:
- name: test
num_bytes: 812985
num_examples: 352
- name: test_latin
num_bytes: 601753
num_examples: 360
download_size: 826233
dataset_size: 1414738
configs:
- config_name: high
data_files:
- split: train
path: high/train-*
- split: train_latin
path: high/train_latin-*
- split: test
path: high/test-*
- split: test_latin
path: high/test_latin-*
- split: validation
path: high/validation-*
- split: validation_latin
path: high/validation_latin-*
- config_name: high_test
data_files:
- split: test
path: high_test/test-*
- split: test_latin
path: high_test/test_latin-*
- config_name: middle
data_files:
- split: train
path: middle/train-*
- split: train_latin
path: middle/train_latin-*
- split: test
path: middle/test-*
- split: test_latin
path: middle/test_latin-*
- split: validation
path: middle/validation-*
- split: validation_ltn
path: middle/validation_ltn-*
- config_name: middle_test
data_files:
- split: test
path: middle_test/test-*
- split: test_latin
path: middle_test/test_latin-*
Dataset Card for EgyptianRACE Medium and High (Arabic and Latin Script)
Table of Contents
- Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
Dataset Summary
RACE Medium and High in (Egyptian Arabic and Latin Script) is a reading comprehension benchmark sourced from high school English exams. It tests advanced reading, summarization, and inference skills using multiple-choice questions with 4 answer choices.
Supported Tasks
- Task Category: Multiple-choice question answering
- Task: Selecting the correct answer from a list of options
Languages
The dataset is available in Egyptian Arabic and Latin Script.
Data Splits
All datasets include a test split. Some also contain a development split for few-shot purposes.
Dataset Creation
Curation Rationale
To evaluate LLMs in Egyptian Arabic and its Latin-script form using established MCQ formats across varied domains.
Personal and Sensitive Information
No personal or sensitive information is included.
Considerations for Using the Data
Social Impact of Dataset
Supports the development of robust LLMs for underrepresented dialects and writing systems.
Discussion of Biases
May inherit translation model biases; dialect variation not exhaustively covered.
Other Known Limitations
- Limited to test splits
- Focused on selected subjects from original datasets
Additional Information
Dataset Curators
- MBZUAI-Paris team