Datasets:
image
string | mask
string | label
list | modality
string | dataset
string | official_split
string | patient_id
string |
|---|---|---|---|---|---|---|
data/nii/CHAOS/Train_Sets/CT/21/7_.nii.gz
|
data/nii/CHAOS/Train_Sets/CT/21/label.nii.gz
|
[
"liver"
] |
CT
|
CHAOS_CT
|
unknown
|
21
|
data/nii/CHAOS/Train_Sets/CT/24/20696_.nii.gz
|
data/nii/CHAOS/Train_Sets/CT/24/label.nii.gz
|
[
"liver"
] |
CT
|
CHAOS_CT
|
unknown
|
24
|
data/nii/CHAOS/Train_Sets/CT/27/6_.nii.gz
|
data/nii/CHAOS/Train_Sets/CT/27/label.nii.gz
|
[
"liver"
] |
CT
|
CHAOS_CT
|
unknown
|
27
|
data/nii/CHAOS/Train_Sets/CT/6/3_.nii.gz
|
data/nii/CHAOS/Train_Sets/CT/6/label.nii.gz
|
[
"liver"
] |
CT
|
CHAOS_CT
|
unknown
|
6
|
data/nii/CHAOS/Train_Sets/CT/19/10_.nii.gz
|
data/nii/CHAOS/Train_Sets/CT/19/label.nii.gz
|
[
"liver"
] |
CT
|
CHAOS_CT
|
unknown
|
19
|
data/nii/CHAOS/Train_Sets/CT/14/6_.nii.gz
|
data/nii/CHAOS/Train_Sets/CT/14/label.nii.gz
|
[
"liver"
] |
CT
|
CHAOS_CT
|
unknown
|
14
|
data/nii/CHAOS/Train_Sets/CT/5/6_.nii.gz
|
data/nii/CHAOS/Train_Sets/CT/5/label.nii.gz
|
[
"liver"
] |
CT
|
CHAOS_CT
|
unknown
|
5
|
data/nii/CHAOS/Train_Sets/CT/2/5_.nii.gz
|
data/nii/CHAOS/Train_Sets/CT/2/label.nii.gz
|
[
"liver"
] |
CT
|
CHAOS_CT
|
unknown
|
2
|
data/nii/CHAOS/Train_Sets/CT/23/6_.nii.gz
|
data/nii/CHAOS/Train_Sets/CT/23/label.nii.gz
|
[
"liver"
] |
CT
|
CHAOS_CT
|
unknown
|
23
|
data/nii/CHAOS/Train_Sets/CT/1/4_.nii.gz
|
data/nii/CHAOS/Train_Sets/CT/1/label.nii.gz
|
[
"liver"
] |
CT
|
CHAOS_CT
|
unknown
|
1
|
data/nii/CHAOS/Train_Sets/CT/26/9213_.nii.gz
|
data/nii/CHAOS/Train_Sets/CT/26/label.nii.gz
|
[
"liver"
] |
CT
|
CHAOS_CT
|
unknown
|
26
|
data/nii/CHAOS/Train_Sets/CT/29/6_.nii.gz
|
data/nii/CHAOS/Train_Sets/CT/29/label.nii.gz
|
[
"liver"
] |
CT
|
CHAOS_CT
|
unknown
|
29
|
data/nii/CHAOS/Train_Sets/CT/16/4_.nii.gz
|
data/nii/CHAOS/Train_Sets/CT/16/label.nii.gz
|
[
"liver"
] |
CT
|
CHAOS_CT
|
unknown
|
16
|
data/nii/CHAOS/Train_Sets/CT/30/6_.nii.gz
|
data/nii/CHAOS/Train_Sets/CT/30/label.nii.gz
|
[
"liver"
] |
CT
|
CHAOS_CT
|
unknown
|
30
|
data/nii/CHAOS/Train_Sets/CT/22/9479_.nii.gz
|
data/nii/CHAOS/Train_Sets/CT/22/label.nii.gz
|
[
"liver"
] |
CT
|
CHAOS_CT
|
unknown
|
22
|
data/nii/CHAOS/Train_Sets/CT/25/5_.nii.gz
|
data/nii/CHAOS/Train_Sets/CT/25/label.nii.gz
|
[
"liver"
] |
CT
|
CHAOS_CT
|
unknown
|
25
|
data/nii/CHAOS/Train_Sets/CT/28/287_.nii.gz
|
data/nii/CHAOS/Train_Sets/CT/28/label.nii.gz
|
[
"liver"
] |
CT
|
CHAOS_CT
|
unknown
|
28
|
data/nii/CHAOS/Train_Sets/CT/10/5_.nii.gz
|
data/nii/CHAOS/Train_Sets/CT/10/label.nii.gz
|
[
"liver"
] |
CT
|
CHAOS_CT
|
unknown
|
10
|
data/nii/CHAOS/Train_Sets/CT/8/2_.nii.gz
|
data/nii/CHAOS/Train_Sets/CT/8/label.nii.gz
|
[
"liver"
] |
CT
|
CHAOS_CT
|
unknown
|
8
|
data/nii/CHAOS/Train_Sets/CT/18/3_.nii.gz
|
data/nii/CHAOS/Train_Sets/CT/18/label.nii.gz
|
[
"liver"
] |
CT
|
CHAOS_CT
|
unknown
|
18
|
CHAOS CT Dataset
Dataset Description
The CHAOS CT dataset from the CHAOS (Combined Healthy Abdominal Organ Segmentation) challenge. This dataset contains CT scans for liver segmentation from CT scans.
Dataset Details
- Modality: CT
- Target: liver
- Format: NIfTI (.nii.gz)
- Challenge: CHAOS 2019
Dataset Structure
Each sample in the JSONL file contains:
{
"image": "path/to/image.nii.gz",
"mask": "path/to/mask.nii.gz",
"label": ['liver'],
"modality": "CT",
"dataset": "CHAOS_CT",
"official_split": "train",
"patient_id": "patient_id"
}
Organ Labels
- Liver: Single organ segmentation
Usage
Load Metadata
from datasets import load_dataset
# Load the dataset
ds = load_dataset("Angelou0516/chaos-ct")
# Access a sample
sample = ds['train'][0]
print(f"Patient ID: {sample['patient_id']}")
print(f"Image: {sample['image']}")
print(f"Mask: {sample['mask']}")
print(f"Labels: {sample['label']}")
Load Images
from huggingface_hub import snapshot_download
import nibabel as nib
import os
# Download the full dataset
local_path = snapshot_download(
repo_id="Angelou0516/chaos-ct",
repo_type="dataset"
)
# Load a sample
sample = ds['train'][0]
image = nib.load(os.path.join(local_path, sample['image']))
mask = nib.load(os.path.join(local_path, sample['mask']))
# Get numpy arrays
image_data = image.get_fdata()
mask_data = mask.get_fdata()
print(f"Image shape: {image_data.shape}")
print(f"Mask shape: {mask_data.shape}")
Citation
@article{kavur2021chaos,
title={CHAOS Challenge - combined (CT-MR) healthy abdominal organ segmentation},
author={Kavur, A Emre and Gezer, N Sinem and Bar\i c, Mustafa and others},
journal={Medical Image Analysis},
volume={69},
pages={101950},
year={2021},
publisher={Elsevier}
}
License
CC-BY-4.0
Dataset Homepage
https://chaos.grand-challenge.org/
Notes
- This dataset is part of the CHAOS 2019 challenge
- CT scans focus on liver segmentation
- All images are in NIfTI format
- Downloads last month
- 42