AdaptCLIP / README.md
csgaobb's picture
Update README.md
74697db verified
metadata
license: gpl-2.0
tags:
  - anomaly-detection
  - clip
  - zero-shot
  - few-shot
  - industrial-inspection
  - universal-anomaly-detection
pipeline_tag: image-segmentation
library_name: pytorch
datasets:
  - MVTec-AD
  - VisA
language:
  - en
base_model:
  - openai/clip-vit-large-patch14-336

AdaptCLIP

Universal Visual Anomaly Detection model based on CLIP with learnable adapters.

Model Description

AdaptCLIP is a universal (zero-shot and few-shot) anomaly detection framework that leverages CLIP's vision-language capabilities with lightweight learnable adapters for open-word industrial and medical anomaly detection.

Model Variants

Checkpoint Training Dataset Description
adaptclip_checkpoints/12_4_128_train_on_mvtec_3adapters_batch8/epoch_15.pth MVTec-AD Trained on MVTec-AD dataset
adaptclip_checkpoints/12_4_128_train_on_visa_3adapters_batch8/epoch_15.pth VisA Trained on VisA dataset

Usage

# Load checkpoint
import torch
checkpoint = torch.load("./adaptclip_checkpoints/12_4_128_train_on_mvtec_3adapters_batch8/epoch_15.pth")

Citation

If you find this model useful, please cite our work.

@inproceedings{adaptclip,
  title={AdaptCLIP: Adapting CLIP for Universal Visual Anomaly Detection},
  author={Gao, Bin-Bin and Zhou, Yue and Yan, Jiangtao and Cai, Yuezhi and Zhang, Weixi and Wang, Meng and Liu, Jun and Liu, Yong and Wang, Lei and Wang, Chengjie},
  booktitle={AAAI}
  year={2026}
}

License

gpl-2.0