wavlm-base-ug-demo

This model is a fine-tuned version of microsoft/wavlm-base on the AJIKADEV/UGANDA-COURT-SPEECH - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1244
  • Wer: 0.1379

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500.0
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6536 0.8536 1000 0.4550 0.4195
0.3254 1.7068 2000 0.2806 0.2955
0.2162 2.5600 3000 0.2283 0.2417
0.1657 3.4131 4000 0.1805 0.2044
0.1344 4.2663 5000 0.1623 0.1951
0.1038 5.1195 6000 0.1489 0.1737
0.0833 5.9731 7000 0.1348 0.1626
0.0637 6.8263 8000 0.1310 0.1496
0.05 7.6795 9000 0.1272 0.1424
0.0409 8.5327 10000 0.1244 0.1379

Framework versions

  • Transformers 5.0.0.dev0
  • Pytorch 2.9.1+cu128
  • Datasets 3.6.0
  • Tokenizers 0.22.1
Downloads last month
81
Safetensors
Model size
94.4M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ajikadev/wavlm-base-ug-demo

Finetuned
(21)
this model

Evaluation results