wavlm-base-ug-demo
This model is a fine-tuned version of microsoft/wavlm-base on the AJIKADEV/UGANDA-COURT-SPEECH - NA dataset. It achieves the following results on the evaluation set:
- Loss: 0.1244
- Wer: 0.1379
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500.0
- training_steps: 10000
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 0.6536 | 0.8536 | 1000 | 0.4550 | 0.4195 |
| 0.3254 | 1.7068 | 2000 | 0.2806 | 0.2955 |
| 0.2162 | 2.5600 | 3000 | 0.2283 | 0.2417 |
| 0.1657 | 3.4131 | 4000 | 0.1805 | 0.2044 |
| 0.1344 | 4.2663 | 5000 | 0.1623 | 0.1951 |
| 0.1038 | 5.1195 | 6000 | 0.1489 | 0.1737 |
| 0.0833 | 5.9731 | 7000 | 0.1348 | 0.1626 |
| 0.0637 | 6.8263 | 8000 | 0.1310 | 0.1496 |
| 0.05 | 7.6795 | 9000 | 0.1272 | 0.1424 |
| 0.0409 | 8.5327 | 10000 | 0.1244 | 0.1379 |
Framework versions
- Transformers 5.0.0.dev0
- Pytorch 2.9.1+cu128
- Datasets 3.6.0
- Tokenizers 0.22.1
- Downloads last month
- 81
Model tree for ajikadev/wavlm-base-ug-demo
Base model
microsoft/wavlm-base