20240319173854_sota_turing
This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0604
- Precision: 0.9323
- Recall: 0.9453
- F1: 0.9388
- Accuracy: 0.9767
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 69
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 350
- num_epochs: 1
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.1087 | 0.09 | 300 | 0.0997 | 0.8917 | 0.9053 | 0.8984 | 0.9605 |
| 0.1176 | 0.18 | 600 | 0.1043 | 0.8922 | 0.8933 | 0.8927 | 0.9586 |
| 0.1073 | 0.26 | 900 | 0.0945 | 0.8984 | 0.9055 | 0.9020 | 0.9622 |
| 0.0984 | 0.35 | 1200 | 0.0917 | 0.9088 | 0.9023 | 0.9055 | 0.9640 |
| 0.0941 | 0.44 | 1500 | 0.0836 | 0.9076 | 0.9189 | 0.9132 | 0.9666 |
| 0.0879 | 0.53 | 1800 | 0.0781 | 0.9147 | 0.9258 | 0.9202 | 0.9694 |
| 0.0823 | 0.62 | 2100 | 0.0745 | 0.9169 | 0.9306 | 0.9237 | 0.9707 |
| 0.0777 | 0.71 | 2400 | 0.0702 | 0.9249 | 0.9306 | 0.9278 | 0.9724 |
| 0.0729 | 0.79 | 2700 | 0.0664 | 0.9290 | 0.9342 | 0.9316 | 0.9740 |
| 0.0692 | 0.88 | 3000 | 0.0628 | 0.9296 | 0.9409 | 0.9352 | 0.9754 |
| 0.0666 | 0.97 | 3300 | 0.0604 | 0.9323 | 0.9453 | 0.9388 | 0.9767 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.0a0+6a974be
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- -
Model tree for adasgaleus/20240319173854_sota_turing
Base model
google-bert/bert-base-uncased