|
|
from __future__ import print_function |
|
|
import argparse |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
import torch.optim as optim |
|
|
from torchvision import datasets, transforms |
|
|
import numpy as np |
|
|
|
|
|
|
|
|
class Net(nn.Module): |
|
|
def __init__(self): |
|
|
super(Net, self).__init__() |
|
|
self.conv1 = nn.Conv2d(1, 20, 5, 1) |
|
|
self.conv2 = nn.Conv2d(20, 50, 5, 1) |
|
|
self.fc1 = nn.Linear( 4 * 4 *50, 500) |
|
|
self.fc2 = nn.Linear(500, 10) |
|
|
|
|
|
def forward(self, x): |
|
|
x = F.relu(self.conv1(x)) |
|
|
x = F.max_pool2d(x, 2, 2) |
|
|
x = F.relu(self.conv2(x)) |
|
|
x = F.max_pool2d(x, 2, 2) |
|
|
x = x.view(-1, 4* 4 * 50) |
|
|
x = F.relu(self.fc1(x)) |
|
|
x = self.fc2(x) |
|
|
return F.log_softmax(x, dim=1) |
|
|
|
|
|
|
|
|
def train(model, device, train_loader, optimizer, epoch): |
|
|
model.train() |
|
|
for batch_idx, (data, target) in enumerate(train_loader): |
|
|
data, target = data.to(device), target.to(device) |
|
|
optimizer.zero_grad() |
|
|
output = model(data) |
|
|
loss = F.nll_loss(output, target) |
|
|
loss.backward() |
|
|
optimizer.step() |
|
|
if batch_idx % 10 == 0: |
|
|
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( |
|
|
epoch, batch_idx * len(data), len(train_loader.dataset), |
|
|
100. * batch_idx / len(train_loader), loss.item())) |
|
|
|
|
|
|
|
|
def test(model, device, test_loader): |
|
|
model.eval() |
|
|
|
|
|
test_loss = 0 |
|
|
correct = 0 |
|
|
with torch.no_grad(): |
|
|
for data, target in test_loader: |
|
|
data, target = data.to(device), target.to(device) |
|
|
output = model(data) |
|
|
test_loss += F.nll_loss(output, target, reduction='sum').item() |
|
|
pred = output.argmax(dim=1, keepdim=True) |
|
|
correct += pred.eq(target.view_as(pred)).sum().item() |
|
|
|
|
|
test_loss /= len(test_loader.dataset) |
|
|
|
|
|
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( |
|
|
test_loss, correct, len(test_loader.dataset), |
|
|
100. * correct / len(test_loader.dataset))) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
torch.manual_seed(100) |
|
|
device = torch.device("cuda") |
|
|
|
|
|
|
|
|
train_loader = torch.utils.data.DataLoader( |
|
|
datasets.MNIST('../data', train=True, download=True, |
|
|
transform=transforms.Compose([transforms.ToTensor(), |
|
|
transforms.Normalize((0.1307,), (0.3081,))])), |
|
|
batch_size=64, |
|
|
shuffle=True) |
|
|
|
|
|
test_loader = torch.utils.data.DataLoader( |
|
|
datasets.MNIST('../data', train=False, |
|
|
transform=transforms.Compose([transforms.ToTensor(), |
|
|
transforms.Normalize((0.1307,), (0.3081,))])), |
|
|
batch_size=1000, |
|
|
shuffle=True) |
|
|
|
|
|
model = Net().to(device) |
|
|
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) |
|
|
|
|
|
|
|
|
save_model = True |
|
|
for epoch in range(1, 5 + 1): |
|
|
train( model, device, train_loader, optimizer, epoch) |
|
|
test( model, device, test_loader) |
|
|
|
|
|
if (save_model): |
|
|
torch.save(model.state_dict(), "mnist_cnn.pt") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
xx = datasets.MNIST('../data').data[0:10] |
|
|
xx = xx.unsqueeze_(1).float()/255 |
|
|
|
|
|
yy = datasets.MNIST('../data', download=True).targets[0:10] |
|
|
|
|
|
|
|
|
from fgsm import FGM |
|
|
|
|
|
|
|
|
fgsm_params = { |
|
|
'epsilon': 0.1, |
|
|
'order': np.inf, |
|
|
'clip_max': None, |
|
|
'clip_min': None |
|
|
} |
|
|
|
|
|
F1 = FGM(model, device = "cpu") |
|
|
aa = F1.generate(x=xx, y=yy, **fgsm_params) |
|
|
|
|
|
import matplotlib.pyplot as plt |
|
|
plt.imsave('test.jpg', aa[0,0]) |