from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms import numpy as np class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5, 1) self.conv2 = nn.Conv2d(20, 50, 5, 1) self.fc1 = nn.Linear( 4 * 4 *50, 500) self.fc2 = nn.Linear(500, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2, 2) x = x.view(-1, 4* 4 * 50) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) def train(model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) def test(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) torch.manual_seed(100) device = torch.device("cuda") train_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])), batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=False, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])), batch_size=1000, shuffle=True) model = Net().to(device) optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) save_model = True for epoch in range(1, 5 + 1): ## 5 batches train( model, device, train_loader, optimizer, epoch) test( model, device, test_loader) if (save_model): torch.save(model.state_dict(), "mnist_cnn.pt") ############################################################## test xx = datasets.MNIST('../data').data[0:10] xx = xx.unsqueeze_(1).float()/255 yy = datasets.MNIST('../data', download=True).targets[0:10] from fgsm import FGM fgsm_params = { 'epsilon': 0.1, 'order': np.inf, 'clip_max': None, 'clip_min': None } F1 = FGM(model, device = "cpu") ### or cuda aa = F1.generate(x=xx, y=yy, **fgsm_params) import matplotlib.pyplot as plt plt.imsave('test.jpg', aa[0,0])