Add paper link, license and usage example
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,13 +1,52 @@
|
|
| 1 |
---
|
| 2 |
-
pipeline_tag: reinforcement-learning
|
| 3 |
library_name: transformers
|
|
|
|
| 4 |
tags:
|
| 5 |
- In-Context RL
|
|
|
|
| 6 |
---
|
|
|
|
| 7 |
# Mixture-of-Experts Meets In-Context Reinforcement Learning
|
|
|
|
| 8 |
## Sources
|
| 9 |
- **Repository:** [Github](https://github.com/NJU-RL/T2MIR)
|
| 10 |
-
- **Paper:** [Mixture-of-Experts Meets In-Context Reinforcement Learning](https://
|
| 11 |
|
| 12 |
## Model Description
|
| 13 |
-
Checkpoints of T2MIR-AD and T2MIR-DPT on Cheetah-Vel using mixed datasets.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
library_name: transformers
|
| 3 |
+
pipeline_tag: reinforcement-learning
|
| 4 |
tags:
|
| 5 |
- In-Context RL
|
| 6 |
+
license: mit
|
| 7 |
---
|
| 8 |
+
|
| 9 |
# Mixture-of-Experts Meets In-Context Reinforcement Learning
|
| 10 |
+
|
| 11 |
## Sources
|
| 12 |
- **Repository:** [Github](https://github.com/NJU-RL/T2MIR)
|
| 13 |
+
- **Paper:** [Mixture-of-Experts Meets In-Context Reinforcement Learning](https://huggingface.co/papers/2506.05426)
|
| 14 |
|
| 15 |
## Model Description
|
| 16 |
+
Checkpoints of T2MIR-AD and T2MIR-DPT on Cheetah-Vel using mixed datasets.
|
| 17 |
+
|
| 18 |
+
## Usage
|
| 19 |
+
|
| 20 |
+
The provided code implements the T2MIR framework. See the [GitHub repository](https://github.com/NJU-RL/T2MIR) for training and evaluation instructions. Examples are provided below for training and evaluating `T2MIR-AD` and `T2MIR-DPT` on the Cheetah-Vel environment.
|
| 21 |
+
|
| 22 |
+
**Training**
|
| 23 |
+
|
| 24 |
+
To train `T2MIR-AD`, use:
|
| 25 |
+
|
| 26 |
+
```bash
|
| 27 |
+
cd T2MIR-AD
|
| 28 |
+
python train.py cheetah-vel-v0 --exp exp_0 --seed 3407
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
To train `T2MIR-DPT`, use:
|
| 32 |
+
|
| 33 |
+
```bash
|
| 34 |
+
cd T2MIR-DPT
|
| 35 |
+
python train.py cheetah-vel-v0 --exp exp_0 --seed 3407
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
**Evaluation**
|
| 39 |
+
|
| 40 |
+
To evaluate `T2MIR-AD`, use:
|
| 41 |
+
|
| 42 |
+
```bash
|
| 43 |
+
cd T2MIR-AD
|
| 44 |
+
python eval.py cheetah-vel-v0 1 --exp exp_0 --seed 3407 --start-ckpt 89000 --stop-ckpt 89000 --seed-eval 10
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
To evaluate `T2MIR-DPT`, use:
|
| 48 |
+
|
| 49 |
+
```bash
|
| 50 |
+
cd T2MIR-DPT
|
| 51 |
+
python eval_online.py cheetah-vel-v0 1 --exp exp_0 --seed 3407 --start-ckpt 59000 --stop-ckpt 59000 --seed-eval 10
|
| 52 |
+
```
|