Add paper link, license and usage example

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +42 -3
README.md CHANGED
@@ -1,13 +1,52 @@
1
  ---
2
- pipeline_tag: reinforcement-learning
3
  library_name: transformers
 
4
  tags:
5
  - In-Context RL
 
6
  ---
 
7
  # Mixture-of-Experts Meets In-Context Reinforcement Learning
 
8
  ## Sources
9
  - **Repository:** [Github](https://github.com/NJU-RL/T2MIR)
10
- - **Paper:** [Mixture-of-Experts Meets In-Context Reinforcement Learning](https://arxiv.org/abs/2506.05426)
11
 
12
  ## Model Description
13
- Checkpoints of T2MIR-AD and T2MIR-DPT on Cheetah-Vel using mixed datasets.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
2
  library_name: transformers
3
+ pipeline_tag: reinforcement-learning
4
  tags:
5
  - In-Context RL
6
+ license: mit
7
  ---
8
+
9
  # Mixture-of-Experts Meets In-Context Reinforcement Learning
10
+
11
  ## Sources
12
  - **Repository:** [Github](https://github.com/NJU-RL/T2MIR)
13
+ - **Paper:** [Mixture-of-Experts Meets In-Context Reinforcement Learning](https://huggingface.co/papers/2506.05426)
14
 
15
  ## Model Description
16
+ Checkpoints of T2MIR-AD and T2MIR-DPT on Cheetah-Vel using mixed datasets.
17
+
18
+ ## Usage
19
+
20
+ The provided code implements the T2MIR framework. See the [GitHub repository](https://github.com/NJU-RL/T2MIR) for training and evaluation instructions. Examples are provided below for training and evaluating `T2MIR-AD` and `T2MIR-DPT` on the Cheetah-Vel environment.
21
+
22
+ **Training**
23
+
24
+ To train `T2MIR-AD`, use:
25
+
26
+ ```bash
27
+ cd T2MIR-AD
28
+ python train.py cheetah-vel-v0 --exp exp_0 --seed 3407
29
+ ```
30
+
31
+ To train `T2MIR-DPT`, use:
32
+
33
+ ```bash
34
+ cd T2MIR-DPT
35
+ python train.py cheetah-vel-v0 --exp exp_0 --seed 3407
36
+ ```
37
+
38
+ **Evaluation**
39
+
40
+ To evaluate `T2MIR-AD`, use:
41
+
42
+ ```bash
43
+ cd T2MIR-AD
44
+ python eval.py cheetah-vel-v0 1 --exp exp_0 --seed 3407 --start-ckpt 89000 --stop-ckpt 89000 --seed-eval 10
45
+ ```
46
+
47
+ To evaluate `T2MIR-DPT`, use:
48
+
49
+ ```bash
50
+ cd T2MIR-DPT
51
+ python eval_online.py cheetah-vel-v0 1 --exp exp_0 --seed 3407 --start-ckpt 59000 --stop-ckpt 59000 --seed-eval 10
52
+ ```