File size: 9,323 Bytes
5a507bf
86af410
5f1bd6d
 
86af410
 
 
 
 
 
 
 
 
5f1bd6d
86af410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a507bf
 
31c7caa
5a507bf
86af410
 
 
 
 
 
 
 
 
9adf1e6
 
86af410
 
 
5a507bf
86af410
5a507bf
86af410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a507bf
31c7caa
5a507bf
31c7caa
17fc8e4
86af410
 
31c7caa
86af410
 
 
 
 
 
17fc8e4
31c7caa
17fc8e4
86af410
17fc8e4
86af410
17fc8e4
31c7caa
 
17fc8e4
86af410
 
5a507bf
86af410
 
 
 
31c7caa
5a507bf
86af410
 
 
5a507bf
31c7caa
 
86af410
 
 
9c5b756
31c7caa
86af410
 
 
31c7caa
86af410
 
 
3f8a778
31c7caa
3f8a778
86af410
31c7caa
86af410
9c5b756
 
31c7caa
9c5b756
86af410
31c7caa
 
 
 
 
 
 
 
86af410
 
31c7caa
 
86af410
 
 
 
 
 
 
31c7caa
86af410
 
31c7caa
9c5b756
86af410
4a4d8b6
86af410
4a4d8b6
86af410
dd8b970
31c7caa
86af410
dd8b970
86af410
 
6dbe0d6
86af410
 
 
 
 
31c7caa
 
 
 
86af410
 
 
 
 
31c7caa
 
6dbe0d6
86af410
6dbe0d6
86af410
5a507bf
86af410
 
 
 
 
5a507bf
6dfce5f
 
86af410
 
 
 
 
 
 
 
 
6dfce5f
86af410
6dfce5f
86af410
 
 
 
 
6dfce5f
86af410
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
---
license: apache-2.0
language:
- en
metrics:
- precision
- recall
- f1
- accuracy
new_version: v1.1
datasets:
- custom
- chatgpt
pipeline_tag: text-classification
library_name: transformers
tags:
- emotion
- classification
- text-classification
- bert
- emojis
- emotions
- v1.0
- sentiment-analysis
- nlp
- lightweight
- chatbot
- social-media
- mental-health
- short-text
- emotion-detection
- transformers
- real-time
- expressive
- ai
- machine-learning
- english
- inference
- edge-ai
- smart-replies
- tone-analysis
base_model:
- boltuix/bert-lite
- boltuix/bert-mini
---

# BERT Mini Sentiment Analysis – Emotion & Text Classification Model

[![License: Apache 2.0](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![Transformers](https://img.shields.io/badge/Library-Transformers-orange)](https://huggingface.co/docs/transformers)
[![Machine Learning](https://img.shields.io/badge/Machine%20Learning-NLP-brightgreen)](https://en.wikipedia.org/wiki/Natural_language_processing)
[![Sentiment Analysis](https://img.shields.io/badge/Task-Sentiment%20Analysis-blue)](https://huggingface.co/tasks/text-classification)
[![Model: BERT](https://img.shields.io/badge/Model-BERT%20Mini-lightgrey)](https://huggingface.co/boltuix/bert-mini)
[![Language: English](https://img.shields.io/badge/Language-English-blue)](https://en.wikipedia.org/wiki/English_language)
[![Version: v1.1](https://img.shields.io/badge/Version-v1.1-yellow)](https://huggingface.co/Varnikasiva/sentiment-classification-bert-mini)


![Banner](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhvBb9EaSNBPVkqAU-0WBSb37cKqsdY83ygXDDuFphRELsOYGOanbOD2W-y5JYRfnJV-ni7ZtAZoZzms72NZFQn9HLQ4j14zRI8OB3S40MI1NZq2ldcJ81k_uTHsTs1ltT2c2bdt0oIpoHFQUZuJp9Zl-pexTS6nW3uDW-o7Wkf9lwYK0e_h_cmyiCZY3w/s1080/ml%20(1).png)

---

## 🌟 Overview

The **[BERT Mini Sentiment Analysis](https://huggingface.co/Varnikasiva/sentiment-classification-bert-mini)** model is a **lightweight, high-performance transformer** fine-tuned from **[Boltuix's BERT Mini](https://huggingface.co/boltuix/bert-mini)** for **emotion-based sentiment analysis**. It excels at classifying text into emotional categories such as **happiness**, **sadness**, **anger**, and more, making it ideal for understanding human emotions in text.

With only **11.2M parameters**, this model is **fast, efficient**, and tailored for **low-resource environments** like mobile devices, edge computing, and real-time applications. Whether you're analyzing social media trends, customer feedback, or building sentiment-aware chatbots, this model delivers **robust performance** with minimal computational overhead.

---

## πŸ› οΈ Model Details

- **Model Name:** BERT Mini Sentiment Analysis
- **Developed by:** Varnika S
- **Model Type:** Transformer (BERT-based)
- **Base Model:** [Boltuix BERT Mini](https://huggingface.co/boltuix/bert-mini)
- **Language:** English (en)
- **License:** [MIT](https://opensource.org/licenses/MIT)
- **Parameters:** 11.2M
- **Pipeline Tag:** Text Classification
- **Library:** Transformers (Hugging Face)

This model is fine-tuned on an **emotion-labeled dataset**, ensuring high accuracy in detecting nuanced emotional states. Its compact size and optimized architecture make it perfect for **real-time applications** and **resource-constrained environments**.

---

## πŸš€ Key Applications

Explore the versatile use cases of this model:

| **Use Case** | **Description** |
|--------------|-----------------|
| **Social Media Monitoring** | Track sentiment trends on platforms like Twitter, Reddit, and Instagram to understand audience emotions. |
| **Customer Feedback Analysis** | Extract actionable insights from product reviews, surveys, and support tickets. |
| **Mental Health AI** | Detect emotional distress or mood patterns in online conversations for proactive interventions. |
| **AI Chatbots & Assistants** | Build sentiment-aware chatbots that respond empathetically to user emotions. |
| **Market Research** | Analyze audience reactions to products, campaigns, or services for data-driven decisions. |

---

## πŸ’» Example Usage

Get started with the model using the **Hugging Face Transformers** library. Below is a simple example to classify text sentiment:

```python
from transformers import pipeline

# Initialize the sentiment analysis pipeline
sentiment_analyzer = pipeline("text-classification", model="Varnikasiva/sentiment-classification-bert-mini")

# Analyze text
text = "I feel amazing today!"
result = sentiment_analyzer(text)
print(result)  # Output: [{'label': 'happy', 'score': 0.98}]
```

πŸ”— **Try it now**: [Hugging Face Model Page](https://huggingface.co/Varnikasiva/sentiment-classification-bert-mini)

For more advanced usage, check out the [Hugging Face Transformers Documentation](https://huggingface.co/docs/transformers).

---

## πŸ“Š Model Performance

The model delivers **high accuracy** and **ultra-fast inference**, making it a top choice for real-time applications.

| **Metric** | **Score** |
|------------|-----------|
| **Accuracy** | High (fine-tuned on emotion-labeled dataset) |
| **Inference Speed** | ⚑ Ultra-fast (optimized for low-latency) |
| **Model Size** | 11.2M Parameters |
| **Training Data** | Emotion-Labeled Dataset |

The model's lightweight design ensures **low memory usage** and **high throughput**, even on edge devices.

---

## πŸ› οΈ Fine-Tuning Guide

Want to adapt the model for your specific domain (e.g., finance, healthcare, or customer service)? You can fine-tune it further using **Hugging Face's Trainer API** or **PyTorch Lightning**. Here's a sample setup:

```python
from transformers import Trainer, TrainingArguments

# Define training arguments
training_args = TrainingArguments(
    output_dir="./results",
    evaluation_strategy="epoch",
    learning_rate=2e-5,
    per_device_train_batch_size=16,
    per_device_eval_batch_size=16,
    num_train_epochs=3,
    weight_decay=0.01,
    save_strategy="epoch",
    logging_dir="./logs",
)

# Initialize Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
)

# Start fine-tuning
trainer.train()
```

This setup allows you to **customize the model** for domain-specific tasks with minimal effort.

---

## ❓ Frequently Asked Questions (FAQ)

### **Q1: What datasets were used for fine-tuning?**
The model was fine-tuned on a **curated emotion-labeled dataset**, enabling it to accurately detect emotions like happiness, sadness, anger, and more.

### **Q2: Is this model suitable for real-time applications?**
Absolutely! Its **compact size** and **optimized inference speed** make it ideal for real-time use cases like chatbots, social media monitoring, and live sentiment analysis.

### **Q3: Can I fine-tune this model for my own use case?**
Yes! Use the **Hugging Face Trainer API** or **PyTorch Lightning** to fine-tune the model on your dataset for enhanced performance in specific domains.

### **Q4: What makes this model different from other BERT models?**
This model is based on **Boltuix's BERT Mini**, a lightweight version of BERT with only 11.2M parameters, fine-tuned specifically for **emotion-based sentiment analysis**. It balances performance and efficiency, making it perfect for resource-constrained environments.

---

## πŸ”— Additional Resources

- πŸ“š [Hugging Face Transformers Documentation](https://huggingface.co/docs/transformers)
- 🧠 [Boltuix BERT Mini Model](https://huggingface.co/boltuix/bert-mini)
- πŸ“œ [MIT License](https://opensource.org/licenses/MIT)
- πŸ“– [Guide to Fine-Tuning BERT Models](https://huggingface.co/docs/transformers/training)

---

## 🀝 Contribute & Collaborate

We welcome contributions, feedback, and ideas to enhance this model! Whether it's improving performance, adding new features, or exploring new applications, your input is valuable.

- **Report Issues:** Open an issue on the [Hugging Face model page](https://huggingface.co/Varnikasiva/sentiment-classification-bert-mini).
- **Suggest Features:** Share your ideas for extending the model's capabilities.
- **Collaborate:** Interested in research or building applications? Reach out!

πŸ“¬ **Contact:** [[email protected]](mailto:[email protected])

---

## 🌟 Why Choose This Model?

- **Lightweight & Efficient:** Only 11.2M parameters for fast inference on low-resource devices.
- **Emotion-Focused:** Fine-tuned for nuanced emotion detection, not just positive/negative sentiment.
- **Open-Source:** Licensed under MIT for flexible use in commercial and research projects.
- **Easy to Use:** Seamless integration with Hugging Face's Transformers library.
- **Versatile:** Applicable to social media, customer feedback, mental health, and more.

---

## 🎯 Get Started Today!

Ready to dive into emotion-based sentiment analysis? Head over to the [Hugging Face Model Page](https://huggingface.co/Varnikasiva/sentiment-classification-bert-mini) to explore the model, try the demo, or download it for your project.

**Happy Coding! πŸš€**

---

*Tags: #transformers #bert #nlp #sentiment-analysis #emotion-detection #huggingface #text-classification #machine-learning #open-source #ai #mental-health #customer-feedback #social-media-analysis*