File size: 9,323 Bytes
5a507bf 86af410 5f1bd6d 86af410 5f1bd6d 86af410 5a507bf 31c7caa 5a507bf 86af410 9adf1e6 86af410 5a507bf 86af410 5a507bf 86af410 5a507bf 31c7caa 5a507bf 31c7caa 17fc8e4 86af410 31c7caa 86af410 17fc8e4 31c7caa 17fc8e4 86af410 17fc8e4 86af410 17fc8e4 31c7caa 17fc8e4 86af410 5a507bf 86af410 31c7caa 5a507bf 86af410 5a507bf 31c7caa 86af410 9c5b756 31c7caa 86af410 31c7caa 86af410 3f8a778 31c7caa 3f8a778 86af410 31c7caa 86af410 9c5b756 31c7caa 9c5b756 86af410 31c7caa 86af410 31c7caa 86af410 31c7caa 86af410 31c7caa 9c5b756 86af410 4a4d8b6 86af410 4a4d8b6 86af410 dd8b970 31c7caa 86af410 dd8b970 86af410 6dbe0d6 86af410 31c7caa 86af410 31c7caa 6dbe0d6 86af410 6dbe0d6 86af410 5a507bf 86af410 5a507bf 6dfce5f 86af410 6dfce5f 86af410 6dfce5f 86af410 6dfce5f 86af410 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
---
license: apache-2.0
language:
- en
metrics:
- precision
- recall
- f1
- accuracy
new_version: v1.1
datasets:
- custom
- chatgpt
pipeline_tag: text-classification
library_name: transformers
tags:
- emotion
- classification
- text-classification
- bert
- emojis
- emotions
- v1.0
- sentiment-analysis
- nlp
- lightweight
- chatbot
- social-media
- mental-health
- short-text
- emotion-detection
- transformers
- real-time
- expressive
- ai
- machine-learning
- english
- inference
- edge-ai
- smart-replies
- tone-analysis
base_model:
- boltuix/bert-lite
- boltuix/bert-mini
---
# BERT Mini Sentiment Analysis β Emotion & Text Classification Model
[](https://opensource.org/licenses/Apache-2.0)
[](https://huggingface.co/docs/transformers)
[](https://en.wikipedia.org/wiki/Natural_language_processing)
[](https://huggingface.co/tasks/text-classification)
[](https://huggingface.co/boltuix/bert-mini)
[](https://en.wikipedia.org/wiki/English_language)
[](https://huggingface.co/Varnikasiva/sentiment-classification-bert-mini)
.png)
---
## π Overview
The **[BERT Mini Sentiment Analysis](https://huggingface.co/Varnikasiva/sentiment-classification-bert-mini)** model is a **lightweight, high-performance transformer** fine-tuned from **[Boltuix's BERT Mini](https://huggingface.co/boltuix/bert-mini)** for **emotion-based sentiment analysis**. It excels at classifying text into emotional categories such as **happiness**, **sadness**, **anger**, and more, making it ideal for understanding human emotions in text.
With only **11.2M parameters**, this model is **fast, efficient**, and tailored for **low-resource environments** like mobile devices, edge computing, and real-time applications. Whether you're analyzing social media trends, customer feedback, or building sentiment-aware chatbots, this model delivers **robust performance** with minimal computational overhead.
---
## π οΈ Model Details
- **Model Name:** BERT Mini Sentiment Analysis
- **Developed by:** Varnika S
- **Model Type:** Transformer (BERT-based)
- **Base Model:** [Boltuix BERT Mini](https://huggingface.co/boltuix/bert-mini)
- **Language:** English (en)
- **License:** [MIT](https://opensource.org/licenses/MIT)
- **Parameters:** 11.2M
- **Pipeline Tag:** Text Classification
- **Library:** Transformers (Hugging Face)
This model is fine-tuned on an **emotion-labeled dataset**, ensuring high accuracy in detecting nuanced emotional states. Its compact size and optimized architecture make it perfect for **real-time applications** and **resource-constrained environments**.
---
## π Key Applications
Explore the versatile use cases of this model:
| **Use Case** | **Description** |
|--------------|-----------------|
| **Social Media Monitoring** | Track sentiment trends on platforms like Twitter, Reddit, and Instagram to understand audience emotions. |
| **Customer Feedback Analysis** | Extract actionable insights from product reviews, surveys, and support tickets. |
| **Mental Health AI** | Detect emotional distress or mood patterns in online conversations for proactive interventions. |
| **AI Chatbots & Assistants** | Build sentiment-aware chatbots that respond empathetically to user emotions. |
| **Market Research** | Analyze audience reactions to products, campaigns, or services for data-driven decisions. |
---
## π» Example Usage
Get started with the model using the **Hugging Face Transformers** library. Below is a simple example to classify text sentiment:
```python
from transformers import pipeline
# Initialize the sentiment analysis pipeline
sentiment_analyzer = pipeline("text-classification", model="Varnikasiva/sentiment-classification-bert-mini")
# Analyze text
text = "I feel amazing today!"
result = sentiment_analyzer(text)
print(result) # Output: [{'label': 'happy', 'score': 0.98}]
```
π **Try it now**: [Hugging Face Model Page](https://huggingface.co/Varnikasiva/sentiment-classification-bert-mini)
For more advanced usage, check out the [Hugging Face Transformers Documentation](https://huggingface.co/docs/transformers).
---
## π Model Performance
The model delivers **high accuracy** and **ultra-fast inference**, making it a top choice for real-time applications.
| **Metric** | **Score** |
|------------|-----------|
| **Accuracy** | High (fine-tuned on emotion-labeled dataset) |
| **Inference Speed** | β‘ Ultra-fast (optimized for low-latency) |
| **Model Size** | 11.2M Parameters |
| **Training Data** | Emotion-Labeled Dataset |
The model's lightweight design ensures **low memory usage** and **high throughput**, even on edge devices.
---
## π οΈ Fine-Tuning Guide
Want to adapt the model for your specific domain (e.g., finance, healthcare, or customer service)? You can fine-tune it further using **Hugging Face's Trainer API** or **PyTorch Lightning**. Here's a sample setup:
```python
from transformers import Trainer, TrainingArguments
# Define training arguments
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=3,
weight_decay=0.01,
save_strategy="epoch",
logging_dir="./logs",
)
# Initialize Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
# Start fine-tuning
trainer.train()
```
This setup allows you to **customize the model** for domain-specific tasks with minimal effort.
---
## β Frequently Asked Questions (FAQ)
### **Q1: What datasets were used for fine-tuning?**
The model was fine-tuned on a **curated emotion-labeled dataset**, enabling it to accurately detect emotions like happiness, sadness, anger, and more.
### **Q2: Is this model suitable for real-time applications?**
Absolutely! Its **compact size** and **optimized inference speed** make it ideal for real-time use cases like chatbots, social media monitoring, and live sentiment analysis.
### **Q3: Can I fine-tune this model for my own use case?**
Yes! Use the **Hugging Face Trainer API** or **PyTorch Lightning** to fine-tune the model on your dataset for enhanced performance in specific domains.
### **Q4: What makes this model different from other BERT models?**
This model is based on **Boltuix's BERT Mini**, a lightweight version of BERT with only 11.2M parameters, fine-tuned specifically for **emotion-based sentiment analysis**. It balances performance and efficiency, making it perfect for resource-constrained environments.
---
## π Additional Resources
- π [Hugging Face Transformers Documentation](https://huggingface.co/docs/transformers)
- π§ [Boltuix BERT Mini Model](https://huggingface.co/boltuix/bert-mini)
- π [MIT License](https://opensource.org/licenses/MIT)
- π [Guide to Fine-Tuning BERT Models](https://huggingface.co/docs/transformers/training)
---
## π€ Contribute & Collaborate
We welcome contributions, feedback, and ideas to enhance this model! Whether it's improving performance, adding new features, or exploring new applications, your input is valuable.
- **Report Issues:** Open an issue on the [Hugging Face model page](https://huggingface.co/Varnikasiva/sentiment-classification-bert-mini).
- **Suggest Features:** Share your ideas for extending the model's capabilities.
- **Collaborate:** Interested in research or building applications? Reach out!
π¬ **Contact:** [[email protected]](mailto:[email protected])
---
## π Why Choose This Model?
- **Lightweight & Efficient:** Only 11.2M parameters for fast inference on low-resource devices.
- **Emotion-Focused:** Fine-tuned for nuanced emotion detection, not just positive/negative sentiment.
- **Open-Source:** Licensed under MIT for flexible use in commercial and research projects.
- **Easy to Use:** Seamless integration with Hugging Face's Transformers library.
- **Versatile:** Applicable to social media, customer feedback, mental health, and more.
---
## π― Get Started Today!
Ready to dive into emotion-based sentiment analysis? Head over to the [Hugging Face Model Page](https://huggingface.co/Varnikasiva/sentiment-classification-bert-mini) to explore the model, try the demo, or download it for your project.
**Happy Coding! π**
---
*Tags: #transformers #bert #nlp #sentiment-analysis #emotion-detection #huggingface #text-classification #machine-learning #open-source #ai #mental-health #customer-feedback #social-media-analysis* |