Varnikasiva commited on
Commit
31c7caa
Β·
verified Β·
1 Parent(s): 3f8a778

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -35
README.md CHANGED
@@ -10,69 +10,118 @@ base_model:
10
  pipeline_tag: text-classification
11
  ---
12
 
13
- **bert-mini-sentiment-analysis**
14
 
15
- ## Model Details
 
16
 
17
- ### Model Description
18
- This model is a fine-tuned BERT Mini model for sentiment analysis,using the Prajjwal BERT Mini architecture as the base.
19
- It classifies text into various emotional labels such as sadness, happiness, anger, and others, capturing a wide range of human sentiments.
20
- The model is designed to provide nuanced insights into emotional expressions across diverse contexts.
21
 
22
- - **Developed by:** Varnika S
23
- - **Model type:** Transformer
24
- - **Language(s) (NLP):** English(en)
25
- - **License:** MIT License
26
- - **Finetuned from model:** Prajjwal's BERT Mini
27
 
28
- ## Uses
29
 
30
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
31
 
32
- This model is designed for sentiment analysis tasks, allowing users to classify text into various emotional labels such as sadness, happiness, anger, and others. It is suitable for applications in customer feedback analysis, social media monitoring, and mental health assessments, providing valuable insights into emotional responses.
 
 
 
 
 
 
33
 
34
- **Foreseeable Users:**
35
 
36
- **Developers:**
37
- Those looking to integrate sentiment analysis into applications or services.
38
 
39
- **Researchers:**
40
- Academics studying emotional expressions in text data or working on NLP projects.
41
 
42
- **Businesses:**
43
- Companies wanting to analyze customer feedback or social media sentiment to improve products and services.
44
 
45
- **Mental Health Professionals:**
46
- Practitioners who can use the model to gauge emotional states based on textual data.
47
 
48
- ### Direct Use
 
 
 
49
 
50
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
51
 
52
- This model can be used directly for sentiment analysis tasks by leveraging the Hugging Face Transformers library. Users can input text data and receive sentiment classifications without the need for additional fine-tuning.
 
 
53
 
54
- **Decoded Image**
 
 
 
 
 
55
 
56
- ![Overview](https://huggingface.co/Varnikasiva/sentiment-classification-bert-mini/resolve/main/model_overview.png)
57
 
58
- **Example Usage:**
 
 
59
 
60
  ```python
61
- from transformers import pipeline
62
 
63
- # Load the sentiment analysis pipeline
64
- sentiment_analysis = pipeline("sentiment-analysis", model="your_huggingface_username/bert-mini-sentiment-analysis")
 
 
 
 
 
 
 
 
65
 
66
- # Analyze sentiment
67
- result = sentiment_analysis("I feel great today!")
68
- print(result) # Output: [{'label': 'happy'}]
 
 
 
 
 
69
 
 
70
 
 
71
 
 
72
 
 
 
73
 
 
 
74
 
 
 
 
 
 
 
 
 
 
 
 
75
 
 
76
 
 
 
77
 
 
78
 
 
10
  pipeline_tag: text-classification
11
  ---
12
 
13
+ # BERT Mini Sentiment Analysis – Emotion & Text Classification Model
14
 
15
+ ## Model Details
16
+ [BERT Mini Sentiment Analysis](https://huggingface.co/Varnikasiva/sentiment-classification-bert-mini) is a **lightweight transformer model** fine-tuned from **Prajjwal's BERT Mini** for **emotion-based sentiment analysis**. It classifies text into various **emotional labels** such as happiness, sadness, anger, and others.
17
 
18
+ With **11.2M parameters**, this model is **fast, efficient, and optimized for real-time applications**, making it perfect for **low-resource environments** like mobile and edge devices.
 
 
 
19
 
20
+ - **Developed by:** Varnika S
21
+ - **Model Type:** Transformer
22
+ - **Language:** English (en)
23
+ - **License:** MIT
24
+ - **Finetuned from:** Prajjwal's BERT Mini
25
 
26
+ ---
27
 
28
+ ## πŸš€ Key Applications
29
 
30
+ | **Use Case** | **Description** |
31
+ |-------------|----------------|
32
+ | **Social Media Analysis** | Analyze sentiment trends on Twitter, Reddit, and Instagram |
33
+ | **Customer Feedback** | Extract insights from product reviews, surveys, and support tickets |
34
+ | **Mental Health AI** | Detect emotional distress in online conversations |
35
+ | **AI Chatbots & Virtual Assistants** | Enable sentiment-aware chatbot responses |
36
+ | **Market Research** | Understand audience reactions to products and services |
37
 
38
+ ---
39
 
40
+ ## Example Usage
 
41
 
42
+ Use the model easily with the **Hugging Face Transformers library**:
 
43
 
44
+ ```python
45
+ from transformers import pipeline
46
 
47
+ # Load the fine-tuned BERT Mini sentiment analysis model
48
+ sentiment_analysis = pipeline("text-classification", model="Varnikasiva/sentiment-classification-bert-mini")
49
 
50
+ # Analyze sentiment
51
+ result = sentiment_analysis("I feel amazing today!")
52
+ print(result) # Output: [{'label': 'happy'}]
53
+ ```
54
 
55
+ πŸš€ **Try it here**: [Hugging Face Model Page](https://huggingface.co/Varnikasiva/sentiment-classification-bert-mini)
56
 
57
+ ---
58
+
59
+ ## πŸ”₯ Model Performance
60
 
61
+ | **Metric** | **Score** |
62
+ |------------|---------|
63
+ | **Accuracy** | High |
64
+ | **Inference Speed** | ⚑ Ultra-fast |
65
+ | **Model Size** | 11.2M Parameters |
66
+ | **Fine-Tuned On** | Emotion-Labeled Dataset |
67
 
68
+ ---
69
 
70
+ ## πŸ“Œ How to Fine-Tune Further?
71
+
72
+ To fine-tune this model on your own dataset, use **Hugging Face's Trainer API** or **PyTorch Lightning**:
73
 
74
  ```python
75
+ from transformers import Trainer, TrainingArguments
76
 
77
+ training_args = TrainingArguments(
78
+ output_dir="./results",
79
+ evaluation_strategy="epoch",
80
+ learning_rate=2e-5,
81
+ per_device_train_batch_size=16,
82
+ per_device_eval_batch_size=16,
83
+ num_train_epochs=3,
84
+ weight_decay=0.01,
85
+ )
86
+ ```
87
 
88
+ This allows you to **adapt the model to specific domains**, such as **finance, healthcare, or customer service.**
89
+
90
+ ---
91
+
92
+ ## πŸ”– Tags & SEO Keywords
93
+ ```
94
+ #transformers #bert #nlp #sentiment-analysis #emotion-detection #huggingface #text-classification #machine-learning #open-source #ai #mental-health #customer-feedback #social-media-analysis
95
+ ```
96
 
97
+ Adding these **hashtags** helps **increase visibility** on Hugging Face search results!
98
 
99
+ ---
100
 
101
+ ## πŸ’‘ Frequently Asked Questions (FAQ)
102
 
103
+ ### **Q1: What datasets were used for fine-tuning?**
104
+ A: This model was fine-tuned on an **emotion-labeled dataset**, ensuring **high accuracy** for detecting happiness, sadness, anger, and more.
105
 
106
+ ### **Q2: Can I use this model for real-time applications?**
107
+ A: Yes! The model is optimized for **low-latency and high-speed inference**, making it perfect for **chatbots, social media monitoring, and real-time sentiment analysis**.
108
 
109
+ ### **Q3: How can I fine-tune this model further?**
110
+ A: You can fine-tune it on your own data using **Hugging Face's Trainer API** or **PyTorch Lightning** for better domain-specific performance.
111
+
112
+ ---
113
+
114
+ ## πŸ”— Additional Resources
115
+ - [Hugging Face Documentation](https://huggingface.co/docs/transformers)
116
+ - [BERT Mini Architecture](https://huggingface.co/prajjwal1/bert-mini)
117
+ - [MIT License Details](https://opensource.org/licenses/MIT)
118
+
119
+ ---
120
 
121
+ ## πŸš€ Contribute & Give Feedback
122
 
123
+ Feel free to contribute to this project or provide feedback to help improve the model.
124
+ If you encounter issues or have feature requests, please reach out! 🎯
125
 
126
+ **Happy Coding! πŸš€**
127