MPNet base trained on AllNLI triplets
This is a sentence-transformers model finetuned from microsoft/mpnet-base on the sxc_med_llm_chemical_gen dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/mpnet-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Saideepthi55/sentencetransformer-ft")
sentences = [
'With a molecule represented by the SMILES string CNNNCC(=O)N[C@H](C)C[C@@H](C)NCc1ccc2c(c1)CCC2, propose adjustments that can increase its logP value while keeping the output molecule structurally related to the input molecule.',
'Given a molecule expressed in SMILES string, help me optimize it according to my requirements.',
'In line with your criteria, I\'ve optimized the molecule and present it as "C[C@H](C[C@@H](C)NC(=O)COC(C)(C)C)NCc1ccc2c(c1)CCC2".',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Triplet
| Metric |
Value |
| cosine_accuracy |
0.6562 |
| dot_accuracy |
0.5342 |
| manhattan_accuracy |
0.7076 |
| euclidean_accuracy |
0.6584 |
| max_accuracy |
0.7076 |
Triplet
| Metric |
Value |
| cosine_accuracy |
0.9804 |
| dot_accuracy |
0.0189 |
| manhattan_accuracy |
0.9811 |
| euclidean_accuracy |
0.9802 |
| max_accuracy |
0.9811 |
Training Details
Training Dataset
sxc_med_llm_chemical_gen
Evaluation Dataset
sxc_med_llm_chemical_gen
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
learning_rate: 2e-05
num_train_epochs: 1
warmup_ratio: 0.1
fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 8
per_device_eval_batch_size: 8
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 1
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
eval_use_gather_object: False
batch_sampler: batch_sampler
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
loss |
all-nli-dev_max_accuracy |
| 0 |
0 |
- |
- |
0.7076 |
| 0.0174 |
64 |
- |
- |
0.7156 |
| 0.0068 |
100 |
2.7336 |
2.6486 |
0.7524 |
| 0.0136 |
200 |
2.4965 |
1.9213 |
0.8162 |
| 0.0204 |
300 |
1.9042 |
1.7761 |
0.822 |
| 0.0272 |
400 |
1.6856 |
1.7172 |
0.8371 |
| 0.0340 |
500 |
1.6117 |
1.6916 |
0.8507 |
| 0.0408 |
600 |
1.5673 |
1.6809 |
0.8976 |
| 0.0477 |
700 |
1.5984 |
1.7052 |
0.9329 |
| 0.0545 |
800 |
1.5828 |
1.6841 |
0.9391 |
| 0.0613 |
900 |
1.5375 |
1.6534 |
0.9267 |
| 0.0681 |
1000 |
1.5561 |
1.6619 |
0.9509 |
| 0.0749 |
1100 |
1.4911 |
1.6538 |
0.9556 |
| 0.0817 |
1200 |
1.5075 |
1.6498 |
0.966 |
| 0.0885 |
1300 |
1.4722 |
1.6468 |
0.946 |
| 0.0953 |
1400 |
1.4806 |
1.6981 |
0.9631 |
| 0.1021 |
1500 |
1.4788 |
1.6335 |
0.9662 |
| 0.1089 |
1600 |
1.4668 |
1.6668 |
0.9731 |
| 0.1157 |
1700 |
1.4383 |
1.6473 |
0.9711 |
| 0.1225 |
1800 |
1.4549 |
1.6462 |
0.9713 |
| 0.1294 |
1900 |
1.4394 |
1.6184 |
0.9718 |
| 0.1362 |
2000 |
1.3861 |
1.6156 |
0.9676 |
| 0.1430 |
2100 |
1.4111 |
1.6045 |
0.9711 |
| 0.1498 |
2200 |
1.4286 |
1.6056 |
0.9782 |
| 0.1566 |
2300 |
1.4669 |
1.6174 |
0.9764 |
| 0.1634 |
2400 |
1.3761 |
1.6182 |
0.9776 |
| 0.1702 |
2500 |
1.4119 |
1.6150 |
0.9738 |
| 0.1770 |
2600 |
1.3625 |
1.5984 |
0.9776 |
| 0.1838 |
2700 |
1.3726 |
1.6092 |
0.9807 |
| 0.1906 |
2800 |
1.3265 |
1.6059 |
0.9789 |
| 0.1974 |
2900 |
1.3925 |
1.6004 |
0.978 |
| 0.2042 |
3000 |
1.3524 |
1.5964 |
0.9773 |
| 0.2111 |
3100 |
1.342 |
1.6213 |
0.9787 |
| 0.2179 |
3200 |
1.3478 |
1.6016 |
0.9822 |
| 0.2247 |
3300 |
1.3888 |
1.6038 |
0.9793 |
| 0.2315 |
3400 |
1.3328 |
1.5977 |
0.9813 |
| 0.2383 |
3500 |
1.372 |
1.6114 |
0.9824 |
| 0.2451 |
3600 |
1.3046 |
1.6082 |
0.9824 |
| 0.2519 |
3700 |
1.3857 |
1.5922 |
0.9824 |
| 0.2587 |
3800 |
1.3236 |
1.6127 |
0.9809 |
| 0.2655 |
3900 |
1.2929 |
1.5935 |
0.9824 |
| 0.2723 |
4000 |
1.3889 |
1.6047 |
0.9831 |
| 0.2791 |
4100 |
1.3509 |
1.6030 |
0.9844 |
| 0.2859 |
4200 |
1.3455 |
1.6099 |
0.9824 |
| 0.2928 |
4300 |
1.337 |
1.5939 |
0.984 |
| 0.2996 |
4400 |
1.3302 |
1.6057 |
0.9827 |
| 0.3064 |
4500 |
1.3377 |
1.6254 |
0.9833 |
| 0.3132 |
4600 |
1.3221 |
1.6020 |
0.9849 |
| 0.3200 |
4700 |
1.3209 |
1.6146 |
0.9824 |
| 0.3268 |
4800 |
1.354 |
1.6022 |
0.9824 |
| 0.3336 |
4900 |
1.3213 |
1.6136 |
0.9822 |
| 0.3404 |
5000 |
1.3484 |
1.5920 |
0.9807 |
| 0.3472 |
5100 |
1.3412 |
1.6106 |
0.978 |
| 0.3540 |
5200 |
1.3532 |
1.6001 |
0.9784 |
| 0.3608 |
5300 |
1.2984 |
1.6192 |
0.9762 |
| 0.3676 |
5400 |
1.3621 |
1.5850 |
0.98 |
| 0.3745 |
5500 |
1.2839 |
1.6158 |
0.9807 |
| 0.3813 |
5600 |
1.3664 |
1.6030 |
0.9831 |
| 0.3881 |
5700 |
1.327 |
1.6168 |
0.9822 |
| 0.3949 |
5800 |
1.3123 |
1.6040 |
0.982 |
| 0.4017 |
5900 |
1.3019 |
1.6092 |
0.9824 |
| 0.4085 |
6000 |
1.3908 |
1.5935 |
0.9829 |
| 0.4153 |
6100 |
1.3136 |
1.5916 |
0.9791 |
| 0.4221 |
6200 |
1.32 |
1.6091 |
0.9807 |
| 0.4289 |
6300 |
1.3018 |
1.6052 |
0.9827 |
| 0.4357 |
6400 |
1.3144 |
1.6083 |
0.9816 |
| 0.4425 |
6500 |
1.2865 |
1.6015 |
0.9829 |
| 0.4493 |
6600 |
1.2946 |
1.5882 |
0.9818 |
| 0.4562 |
6700 |
1.3245 |
1.5949 |
0.9824 |
| 0.4630 |
6800 |
1.3278 |
1.6081 |
0.9831 |
| 0.4698 |
6900 |
1.2842 |
1.6086 |
0.9836 |
| 0.4766 |
7000 |
1.3231 |
1.6170 |
0.9811 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}