cellate-tapt_base_ww_mask-LR_2e-05
This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.3214
- Accuracy: 0.7147
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 3407
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 1.3766 | 1.0 | 6 | 1.3727 | 0.7206 |
| 1.3628 | 2.0 | 12 | 1.3402 | 0.7168 |
| 1.3196 | 3.0 | 18 | 1.4073 | 0.7118 |
| 1.3119 | 4.0 | 24 | 1.3776 | 0.7206 |
| 1.3322 | 5.0 | 30 | 1.4455 | 0.7034 |
| 1.2673 | 6.0 | 36 | 1.4568 | 0.7093 |
| 1.2661 | 7.0 | 42 | 1.4778 | 0.6988 |
| 1.2646 | 8.0 | 48 | 1.3543 | 0.7289 |
| 1.2533 | 9.0 | 54 | 1.3255 | 0.7365 |
| 1.2382 | 10.0 | 60 | 1.4248 | 0.7088 |
| 1.2442 | 11.0 | 66 | 1.3088 | 0.7243 |
| 1.2318 | 12.0 | 72 | 1.3868 | 0.7126 |
| 1.2383 | 13.0 | 78 | 1.2669 | 0.7357 |
| 1.2914 | 14.0 | 84 | 1.3244 | 0.7264 |
| 1.2346 | 15.0 | 90 | 1.3439 | 0.7072 |
| 1.233 | 16.0 | 96 | 1.3672 | 0.7218 |
| 1.3158 | 16.7273 | 100 | 1.3214 | 0.7147 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.2
- Tokenizers 0.21.0
- Downloads last month
- 3