cellate-tapt_base_ww_mask-LR_2e-05

This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3214
  • Accuracy: 0.7147

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 3407
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3766 1.0 6 1.3727 0.7206
1.3628 2.0 12 1.3402 0.7168
1.3196 3.0 18 1.4073 0.7118
1.3119 4.0 24 1.3776 0.7206
1.3322 5.0 30 1.4455 0.7034
1.2673 6.0 36 1.4568 0.7093
1.2661 7.0 42 1.4778 0.6988
1.2646 8.0 48 1.3543 0.7289
1.2533 9.0 54 1.3255 0.7365
1.2382 10.0 60 1.4248 0.7088
1.2442 11.0 66 1.3088 0.7243
1.2318 12.0 72 1.3868 0.7126
1.2383 13.0 78 1.2669 0.7357
1.2914 14.0 84 1.3244 0.7264
1.2346 15.0 90 1.3439 0.7072
1.233 16.0 96 1.3672 0.7218
1.3158 16.7273 100 1.3214 0.7147

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.21.0
Downloads last month
3
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Mardiyyah/cellate-tapt_base_ww_mask-LR_2e-05