Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| Administrative |
|
| Other |
|
| Marketing |
|
| Purchasing |
|
| Information Technology |
|
| Consulting |
|
| Project Management |
|
| Sales |
|
| Human Resources |
|
| Business Development |
|
| Customer Support |
|
| Label | Accuracy |
|---|---|
| all | 0.7343 |
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Luu200/department-classifier-v2")
# Run inference
preds = model("Managing Director")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 1 | 2.7229 | 12 |
| Label | Training Sample Count |
|---|---|
| Administrative | 12 |
| Business Development | 5 |
| Consulting | 18 |
| Customer Support | 5 |
| Human Resources | 10 |
| Information Technology | 28 |
| Marketing | 13 |
| Other | 169 |
| Project Management | 18 |
| Purchasing | 10 |
| Sales | 26 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0002 | 1 | 0.3802 | - |
| 0.0119 | 50 | 0.2604 | - |
| 0.0237 | 100 | 0.2071 | - |
| 0.0356 | 150 | 0.1352 | - |
| 0.0475 | 200 | 0.0718 | - |
| 0.0594 | 250 | 0.0334 | - |
| 0.0712 | 300 | 0.0377 | - |
| 0.0831 | 350 | 0.0221 | - |
| 0.0950 | 400 | 0.0162 | - |
| 0.1069 | 450 | 0.0097 | - |
| 0.1187 | 500 | 0.015 | - |
| 0.1306 | 550 | 0.0082 | - |
| 0.1425 | 600 | 0.0119 | - |
| 0.1544 | 650 | 0.0122 | - |
| 0.1662 | 700 | 0.0052 | - |
| 0.1781 | 750 | 0.0085 | - |
| 0.1900 | 800 | 0.0046 | - |
| 0.2019 | 850 | 0.0027 | - |
| 0.2137 | 900 | 0.0073 | - |
| 0.2256 | 950 | 0.0066 | - |
| 0.2375 | 1000 | 0.0044 | - |
| 0.2493 | 1050 | 0.0037 | - |
| 0.2612 | 1100 | 0.0051 | - |
| 0.2731 | 1150 | 0.0045 | - |
| 0.2850 | 1200 | 0.0056 | - |
| 0.2968 | 1250 | 0.0017 | - |
| 0.3087 | 1300 | 0.0049 | - |
| 0.3206 | 1350 | 0.0057 | - |
| 0.3325 | 1400 | 0.0046 | - |
| 0.3443 | 1450 | 0.0033 | - |
| 0.3562 | 1500 | 0.0023 | - |
| 0.3681 | 1550 | 0.002 | - |
| 0.3800 | 1600 | 0.0018 | - |
| 0.3918 | 1650 | 0.003 | - |
| 0.4037 | 1700 | 0.004 | - |
| 0.4156 | 1750 | 0.0056 | - |
| 0.4275 | 1800 | 0.0051 | - |
| 0.4393 | 1850 | 0.004 | - |
| 0.4512 | 1900 | 0.0038 | - |
| 0.4631 | 1950 | 0.0035 | - |
| 0.4749 | 2000 | 0.0026 | - |
| 0.4868 | 2050 | 0.0026 | - |
| 0.4987 | 2100 | 0.0045 | - |
| 0.5106 | 2150 | 0.0006 | - |
| 0.5224 | 2200 | 0.0036 | - |
| 0.5343 | 2250 | 0.0015 | - |
| 0.5462 | 2300 | 0.0004 | - |
| 0.5581 | 2350 | 0.0016 | - |
| 0.5699 | 2400 | 0.0025 | - |
| 0.5818 | 2450 | 0.0025 | - |
| 0.5937 | 2500 | 0.0024 | - |
| 0.6056 | 2550 | 0.0014 | - |
| 0.6174 | 2600 | 0.0035 | - |
| 0.6293 | 2650 | 0.0026 | - |
| 0.6412 | 2700 | 0.0036 | - |
| 0.6531 | 2750 | 0.0003 | - |
| 0.6649 | 2800 | 0.0042 | - |
| 0.6768 | 2850 | 0.0039 | - |
| 0.6887 | 2900 | 0.0026 | - |
| 0.7005 | 2950 | 0.0042 | - |
| 0.7124 | 3000 | 0.0056 | - |
| 0.7243 | 3050 | 0.003 | - |
| 0.7362 | 3100 | 0.0027 | - |
| 0.7480 | 3150 | 0.0025 | - |
| 0.7599 | 3200 | 0.0003 | - |
| 0.7718 | 3250 | 0.0019 | - |
| 0.7837 | 3300 | 0.0033 | - |
| 0.7955 | 3350 | 0.0004 | - |
| 0.8074 | 3400 | 0.0019 | - |
| 0.8193 | 3450 | 0.0025 | - |
| 0.8312 | 3500 | 0.0037 | - |
| 0.8430 | 3550 | 0.0037 | - |
| 0.8549 | 3600 | 0.0035 | - |
| 0.8668 | 3650 | 0.003 | - |
| 0.8787 | 3700 | 0.0032 | - |
| 0.8905 | 3750 | 0.0014 | - |
| 0.9024 | 3800 | 0.0034 | - |
| 0.9143 | 3850 | 0.0042 | - |
| 0.9261 | 3900 | 0.0014 | - |
| 0.9380 | 3950 | 0.0023 | - |
| 0.9499 | 4000 | 0.0018 | - |
| 0.9618 | 4050 | 0.0032 | - |
| 0.9736 | 4100 | 0.0061 | - |
| 0.9855 | 4150 | 0.0022 | - |
| 0.9974 | 4200 | 0.0035 | - |
| 1.0 | 4211 | - | 0.2137 |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}