bert-finetuned-ner
This model is a fine-tuned version of BAAI/bge-small-en-v1.5 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0855
- Precision: 0.9052
- Recall: 0.9271
- F1: 0.9160
- Accuracy: 0.9826
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.4793 | 1.0 | 625 | 0.1832 | 0.7331 | 0.7711 | 0.7516 | 0.9571 |
| 0.1758 | 2.0 | 1250 | 0.1122 | 0.8628 | 0.8955 | 0.8789 | 0.9760 |
| 0.115 | 3.0 | 1875 | 0.0933 | 0.8581 | 0.9095 | 0.8830 | 0.9778 |
| 0.0664 | 4.0 | 2500 | 0.0860 | 0.8858 | 0.9192 | 0.9022 | 0.9806 |
| 0.0521 | 5.0 | 3125 | 0.0810 | 0.8911 | 0.9217 | 0.9062 | 0.9812 |
| 0.0417 | 6.0 | 3750 | 0.0780 | 0.8988 | 0.9207 | 0.9096 | 0.9814 |
| 0.0389 | 7.0 | 4375 | 0.0828 | 0.8896 | 0.9239 | 0.9065 | 0.9808 |
| 0.0288 | 8.0 | 5000 | 0.0835 | 0.9010 | 0.9251 | 0.9129 | 0.9819 |
| 0.0239 | 9.0 | 5625 | 0.0835 | 0.9027 | 0.9278 | 0.9151 | 0.9819 |
| 0.0226 | 10.0 | 6250 | 0.0843 | 0.8997 | 0.9256 | 0.9125 | 0.9818 |
| 0.0211 | 11.0 | 6875 | 0.0848 | 0.9057 | 0.9273 | 0.9163 | 0.9820 |
| 0.0181 | 12.0 | 7500 | 0.0855 | 0.8971 | 0.9276 | 0.9121 | 0.9818 |
| 0.0172 | 13.0 | 8125 | 0.0855 | 0.9052 | 0.9271 | 0.9160 | 0.9826 |
Framework versions
- Transformers 4.50.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.2
- Downloads last month
- 6
Model tree for DanMaks11/bert-finetuned-ner
Base model
BAAI/bge-small-en-v1.5