|
|
--- |
|
|
license: apache-2.0 |
|
|
library_name: peft |
|
|
tags: |
|
|
- generated_from_trainer |
|
|
base_model: google/mt5-base |
|
|
metrics: |
|
|
- bleu |
|
|
- rouge |
|
|
model-index: |
|
|
- name: mt5-base-ICFOSS-malayalam_Hindi_Translator |
|
|
results: [] |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# mt5-base-ICFOSS-malayalam_Hindi_Translator |
|
|
|
|
|
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 1.2179 |
|
|
- Bleu: 6.2035 |
|
|
- Rouge: {'rouge1': 0.2667970960136926, 'rouge2': 0.14574925525428614, 'rougeL': 0.26511828595423204, 'rougeLsum': 0.26501665904942706} |
|
|
- Chrf: {'score': 23.454551827072866, 'char_order': 6, 'word_order': 0, 'beta': 2} |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 0.0002 |
|
|
- train_batch_size: 16 |
|
|
- eval_batch_size: 16 |
|
|
- seed: 42 |
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
|
- lr_scheduler_type: cosine |
|
|
- num_epochs: 5 |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge | Chrf | |
|
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------------------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------:| |
|
|
| 2.5515 | 1.0 | 4315 | 1.2874 | 5.8306 | {'rouge1': 0.2660910934739513, 'rouge2': 0.14404792849379128, 'rougeL': 0.26384549634107013, 'rougeLsum': 0.2637751499455684} | {'score': 22.571342084258088, 'char_order': 6, 'word_order': 0, 'beta': 2} | |
|
|
| 1.9143 | 2.0 | 8630 | 1.2319 | 6.1128 | {'rouge1': 0.263256301663898, 'rouge2': 0.14256738224583015, 'rougeL': 0.261282034035635, 'rougeLsum': 0.2613517649673947} | {'score': 23.235214776547263, 'char_order': 6, 'word_order': 0, 'beta': 2} | |
|
|
| 1.8644 | 3.0 | 12945 | 1.2192 | 6.2145 | {'rouge1': 0.2670714744552978, 'rouge2': 0.14606073298261613, 'rougeL': 0.2652594809906982, 'rougeLsum': 0.26489596193447795} | {'score': 23.438449086905997, 'char_order': 6, 'word_order': 0, 'beta': 2} | |
|
|
| 1.8539 | 4.0 | 17260 | 1.2179 | 6.2043 | {'rouge1': 0.26678061058524805, 'rouge2': 0.14565482302690236, 'rougeL': 0.26489350144733725, 'rougeLsum': 0.26477198178581135} | {'score': 23.464895899326955, 'char_order': 6, 'word_order': 0, 'beta': 2} | |
|
|
| 1.8525 | 5.0 | 21575 | 1.2179 | 6.2035 | {'rouge1': 0.2667970960136926, 'rouge2': 0.14574925525428614, 'rougeL': 0.26511828595423204, 'rougeLsum': 0.26501665904942706} | {'score': 23.454551827072866, 'char_order': 6, 'word_order': 0, 'beta': 2} | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- PEFT 0.10.0 |
|
|
- Transformers 4.40.2 |
|
|
- Pytorch 2.3.0+cu121 |
|
|
- Datasets 2.19.0 |
|
|
- Tokenizers 0.19.1 |