Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from Qwen/Qwen2.5-0.5B-Instruct. It maps sentences & paragraphs to a 896-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: Qwen2Model
(1): Pooling({'word_embedding_dimension': 896, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("AlexWortega/qwen3k")
# Run inference
sentences = [
'When was ABC formed?',
"American Broadcasting Company\nABC launched as a radio network on October 12, 1943, serving as the successor to the NBC Blue Network, which had been purchased by Edward J. Noble. It extended its operations to television in 1948, following in the footsteps of established broadcast networks CBS and NBC. In the mid-1950s, ABC merged with United Paramount Theatres, a chain of movie theaters that formerly operated as a subsidiary of Paramount Pictures. Leonard Goldenson, who had been the head of UPT, made the new television network profitable by helping develop and greenlight many successful series. In the 1980s, after purchasing an 80% interest in cable sports channel ESPN, the network's corporate parent, American Broadcasting Companies, Inc., merged with Capital Cities Communications, owner of several print publications, and television and radio stations. In 1996, most of Capital Cities/ABC's assets were purchased by The Walt Disney Company.",
'Americans Battling Communism\nAmericans Battling Communism, Inc. (ABC) was an anti-communist organization created following an October 1947 speech by Pennsylvania Judge Blair Gunther that called for an "ABC movement" to educate America about communism. Chartered in November 1947 by Harry Alan Sherman, a local lawyer active in various anti-communist organizations, the group took part in such activities as blacklisting by disclosing the names of people suspected of being communists. Its members included local judges and lawyers active in the McCarthy-era prosecution of communists.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 896]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
sts-dev-896 and sts-dev-768EmbeddingSimilarityEvaluator| Metric | sts-dev-896 | sts-dev-768 |
|---|---|---|
| pearson_cosine | 0.7513 | 0.7504 |
| spearman_cosine | 0.7603 | 0.759 |
query, response, and negative| query | response | negative | |
|---|---|---|---|
| type | string | string | string |
| details |
|
|
|
| query | response | negative |
|---|---|---|
Was there a year 0? |
Year zero |
504 |
When is the dialectical method used? |
Dialectic |
Derek Bentley case |
What do Grasshoppers eat? |
Grasshopper |
Groundhog |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
eval_strategy: stepsper_device_train_batch_size: 12per_device_eval_batch_size: 12gradient_accumulation_steps: 4num_train_epochs: 1warmup_ratio: 0.3bf16: Truebatch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 12per_device_eval_batch_size: 12per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 4eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.3warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | sts-dev-896_spearman_cosine | sts-dev-768_spearman_cosine |
|---|---|---|---|---|
| 0.0004 | 10 | 2.2049 | - | - |
| 0.0009 | 20 | 2.3168 | - | - |
| 0.0013 | 30 | 2.3544 | - | - |
| 0.0018 | 40 | 2.2519 | - | - |
| 0.0022 | 50 | 2.1809 | - | - |
| 0.0027 | 60 | 2.1572 | - | - |
| 0.0031 | 70 | 2.1855 | - | - |
| 0.0036 | 80 | 2.5887 | - | - |
| 0.0040 | 90 | 2.883 | - | - |
| 0.0045 | 100 | 2.8557 | - | - |
| 0.0049 | 110 | 2.9356 | - | - |
| 0.0053 | 120 | 2.8833 | - | - |
| 0.0058 | 130 | 2.8394 | - | - |
| 0.0062 | 140 | 2.923 | - | - |
| 0.0067 | 150 | 2.8191 | - | - |
| 0.0071 | 160 | 2.8658 | - | - |
| 0.0076 | 170 | 2.8252 | - | - |
| 0.0080 | 180 | 2.8312 | - | - |
| 0.0085 | 190 | 2.7761 | - | - |
| 0.0089 | 200 | 2.7193 | - | - |
| 0.0094 | 210 | 2.724 | - | - |
| 0.0098 | 220 | 2.7484 | - | - |
| 0.0102 | 230 | 2.7262 | - | - |
| 0.0107 | 240 | 2.6964 | - | - |
| 0.0111 | 250 | 2.6676 | - | - |
| 0.0116 | 260 | 2.6715 | - | - |
| 0.0120 | 270 | 2.6145 | - | - |
| 0.0125 | 280 | 2.6191 | - | - |
| 0.0129 | 290 | 1.9812 | - | - |
| 0.0134 | 300 | 1.6413 | - | - |
| 0.0138 | 310 | 1.6126 | - | - |
| 0.0143 | 320 | 1.3599 | - | - |
| 0.0147 | 330 | 1.2996 | - | - |
| 0.0151 | 340 | 1.2654 | - | - |
| 0.0156 | 350 | 1.9409 | - | - |
| 0.0160 | 360 | 2.1287 | - | - |
| 0.0165 | 370 | 1.8442 | - | - |
| 0.0169 | 380 | 1.6837 | - | - |
| 0.0174 | 390 | 1.5489 | - | - |
| 0.0178 | 400 | 1.4382 | - | - |
| 0.0183 | 410 | 1.4848 | - | - |
| 0.0187 | 420 | 1.3481 | - | - |
| 0.0192 | 430 | 1.3467 | - | - |
| 0.0196 | 440 | 1.3977 | - | - |
| 0.0201 | 450 | 1.26 | - | - |
| 0.0205 | 460 | 1.2412 | - | - |
| 0.0209 | 470 | 1.316 | - | - |
| 0.0214 | 480 | 1.3501 | - | - |
| 0.0218 | 490 | 1.2246 | - | - |
| 0.0223 | 500 | 1.2271 | - | - |
| 0.0227 | 510 | 1.1871 | - | - |
| 0.0232 | 520 | 1.1685 | - | - |
| 0.0236 | 530 | 1.1624 | - | - |
| 0.0241 | 540 | 1.1911 | - | - |
| 0.0245 | 550 | 1.1978 | - | - |
| 0.0250 | 560 | 1.1228 | - | - |
| 0.0254 | 570 | 1.1091 | - | - |
| 0.0258 | 580 | 1.1433 | - | - |
| 0.0263 | 590 | 1.0638 | - | - |
| 0.0267 | 600 | 1.0515 | - | - |
| 0.0272 | 610 | 1.175 | - | - |
| 0.0276 | 620 | 1.0943 | - | - |
| 0.0281 | 630 | 1.1226 | - | - |
| 0.0285 | 640 | 0.9871 | - | - |
| 0.0290 | 650 | 1.0171 | - | - |
| 0.0294 | 660 | 1.0169 | - | - |
| 0.0299 | 670 | 0.9643 | - | - |
| 0.0303 | 680 | 0.9563 | - | - |
| 0.0307 | 690 | 0.9841 | - | - |
| 0.0312 | 700 | 1.0349 | - | - |
| 0.0316 | 710 | 0.8958 | - | - |
| 0.0321 | 720 | 0.9225 | - | - |
| 0.0325 | 730 | 0.842 | - | - |
| 0.0330 | 740 | 0.9104 | - | - |
| 0.0334 | 750 | 0.8927 | - | - |
| 0.0339 | 760 | 0.8508 | - | - |
| 0.0343 | 770 | 0.8835 | - | - |
| 0.0348 | 780 | 0.9531 | - | - |
| 0.0352 | 790 | 0.926 | - | - |
| 0.0356 | 800 | 0.8718 | - | - |
| 0.0361 | 810 | 0.8261 | - | - |
| 0.0365 | 820 | 0.8169 | - | - |
| 0.0370 | 830 | 0.8525 | - | - |
| 0.0374 | 840 | 0.8504 | - | - |
| 0.0379 | 850 | 0.7625 | - | - |
| 0.0383 | 860 | 0.8259 | - | - |
| 0.0388 | 870 | 0.7558 | - | - |
| 0.0392 | 880 | 0.7898 | - | - |
| 0.0397 | 890 | 0.7694 | - | - |
| 0.0401 | 900 | 0.7429 | - | - |
| 0.0405 | 910 | 0.6666 | - | - |
| 0.0410 | 920 | 0.7407 | - | - |
| 0.0414 | 930 | 0.6665 | - | - |
| 0.0419 | 940 | 0.7597 | - | - |
| 0.0423 | 950 | 0.7035 | - | - |
| 0.0428 | 960 | 0.7166 | - | - |
| 0.0432 | 970 | 0.6889 | - | - |
| 0.0437 | 980 | 0.7541 | - | - |
| 0.0441 | 990 | 0.7175 | - | - |
| 0.0446 | 1000 | 0.7389 | 0.6420 | 0.6403 |
| 0.0450 | 1010 | 0.7142 | - | - |
| 0.0454 | 1020 | 0.7301 | - | - |
| 0.0459 | 1030 | 0.7299 | - | - |
| 0.0463 | 1040 | 0.6759 | - | - |
| 0.0468 | 1050 | 0.7036 | - | - |
| 0.0472 | 1060 | 0.6286 | - | - |
| 0.0477 | 1070 | 0.595 | - | - |
| 0.0481 | 1080 | 0.6099 | - | - |
| 0.0486 | 1090 | 0.6377 | - | - |
| 0.0490 | 1100 | 0.6309 | - | - |
| 0.0495 | 1110 | 0.6306 | - | - |
| 0.0499 | 1120 | 0.557 | - | - |
| 0.0504 | 1130 | 0.5898 | - | - |
| 0.0508 | 1140 | 0.5896 | - | - |
| 0.0512 | 1150 | 0.6399 | - | - |
| 0.0517 | 1160 | 0.5923 | - | - |
| 0.0521 | 1170 | 0.5787 | - | - |
| 0.0526 | 1180 | 0.591 | - | - |
| 0.0530 | 1190 | 0.5714 | - | - |
| 0.0535 | 1200 | 0.6047 | - | - |
| 0.0539 | 1210 | 0.5904 | - | - |
| 0.0544 | 1220 | 0.543 | - | - |
| 0.0548 | 1230 | 0.6033 | - | - |
| 0.0553 | 1240 | 0.5445 | - | - |
| 0.0557 | 1250 | 0.5217 | - | - |
| 0.0561 | 1260 | 0.5835 | - | - |
| 0.0566 | 1270 | 0.5353 | - | - |
| 0.0570 | 1280 | 0.5887 | - | - |
| 0.0575 | 1290 | 0.5967 | - | - |
| 0.0579 | 1300 | 0.5036 | - | - |
| 0.0584 | 1310 | 0.5915 | - | - |
| 0.0588 | 1320 | 0.5719 | - | - |
| 0.0593 | 1330 | 0.5238 | - | - |
| 0.0597 | 1340 | 0.5647 | - | - |
| 0.0602 | 1350 | 0.538 | - | - |
| 0.0606 | 1360 | 0.5457 | - | - |
| 0.0610 | 1370 | 0.5169 | - | - |
| 0.0615 | 1380 | 0.4967 | - | - |
| 0.0619 | 1390 | 0.4864 | - | - |
| 0.0624 | 1400 | 0.5133 | - | - |
| 0.0628 | 1410 | 0.5587 | - | - |
| 0.0633 | 1420 | 0.4691 | - | - |
| 0.0637 | 1430 | 0.5186 | - | - |
| 0.0642 | 1440 | 0.4907 | - | - |
| 0.0646 | 1450 | 0.5281 | - | - |
| 0.0651 | 1460 | 0.4741 | - | - |
| 0.0655 | 1470 | 0.4452 | - | - |
| 0.0659 | 1480 | 0.4771 | - | - |
| 0.0664 | 1490 | 0.4289 | - | - |
| 0.0668 | 1500 | 0.4551 | - | - |
| 0.0673 | 1510 | 0.4558 | - | - |
| 0.0677 | 1520 | 0.5159 | - | - |
| 0.0682 | 1530 | 0.4296 | - | - |
| 0.0686 | 1540 | 0.4548 | - | - |
| 0.0691 | 1550 | 0.4439 | - | - |
| 0.0695 | 1560 | 0.4295 | - | - |
| 0.0700 | 1570 | 0.4466 | - | - |
| 0.0704 | 1580 | 0.4717 | - | - |
| 0.0708 | 1590 | 0.492 | - | - |
| 0.0713 | 1600 | 0.4566 | - | - |
| 0.0717 | 1610 | 0.4451 | - | - |
| 0.0722 | 1620 | 0.4715 | - | - |
| 0.0726 | 1630 | 0.4573 | - | - |
| 0.0731 | 1640 | 0.3972 | - | - |
| 0.0735 | 1650 | 0.5212 | - | - |
| 0.0740 | 1660 | 0.4381 | - | - |
| 0.0744 | 1670 | 0.4552 | - | - |
| 0.0749 | 1680 | 0.4767 | - | - |
| 0.0753 | 1690 | 0.4398 | - | - |
| 0.0757 | 1700 | 0.4801 | - | - |
| 0.0762 | 1710 | 0.3751 | - | - |
| 0.0766 | 1720 | 0.4407 | - | - |
| 0.0771 | 1730 | 0.4305 | - | - |
| 0.0775 | 1740 | 0.3938 | - | - |
| 0.0780 | 1750 | 0.4748 | - | - |
| 0.0784 | 1760 | 0.428 | - | - |
| 0.0789 | 1770 | 0.404 | - | - |
| 0.0793 | 1780 | 0.4261 | - | - |
| 0.0798 | 1790 | 0.359 | - | - |
| 0.0802 | 1800 | 0.4422 | - | - |
| 0.0807 | 1810 | 0.4748 | - | - |
| 0.0811 | 1820 | 0.4352 | - | - |
| 0.0815 | 1830 | 0.4032 | - | - |
| 0.0820 | 1840 | 0.4124 | - | - |
| 0.0824 | 1850 | 0.4486 | - | - |
| 0.0829 | 1860 | 0.429 | - | - |
| 0.0833 | 1870 | 0.4189 | - | - |
| 0.0838 | 1880 | 0.3658 | - | - |
| 0.0842 | 1890 | 0.4297 | - | - |
| 0.0847 | 1900 | 0.4215 | - | - |
| 0.0851 | 1910 | 0.3726 | - | - |
| 0.0856 | 1920 | 0.3736 | - | - |
| 0.0860 | 1930 | 0.4287 | - | - |
| 0.0864 | 1940 | 0.4402 | - | - |
| 0.0869 | 1950 | 0.4353 | - | - |
| 0.0873 | 1960 | 0.3622 | - | - |
| 0.0878 | 1970 | 0.3557 | - | - |
| 0.0882 | 1980 | 0.4107 | - | - |
| 0.0887 | 1990 | 0.3982 | - | - |
| 0.0891 | 2000 | 0.453 | 0.7292 | 0.7261 |
| 0.0896 | 2010 | 0.3971 | - | - |
| 0.0900 | 2020 | 0.4374 | - | - |
| 0.0905 | 2030 | 0.4322 | - | - |
| 0.0909 | 2040 | 0.3945 | - | - |
| 0.0913 | 2050 | 0.356 | - | - |
| 0.0918 | 2060 | 0.4182 | - | - |
| 0.0922 | 2070 | 0.3694 | - | - |
| 0.0927 | 2080 | 0.3989 | - | - |
| 0.0931 | 2090 | 0.4237 | - | - |
| 0.0936 | 2100 | 0.3961 | - | - |
| 0.0940 | 2110 | 0.4264 | - | - |
| 0.0945 | 2120 | 0.3609 | - | - |
| 0.0949 | 2130 | 0.4154 | - | - |
| 0.0954 | 2140 | 0.3661 | - | - |
| 0.0958 | 2150 | 0.3328 | - | - |
| 0.0962 | 2160 | 0.3456 | - | - |
| 0.0967 | 2170 | 0.3478 | - | - |
| 0.0971 | 2180 | 0.3339 | - | - |
| 0.0976 | 2190 | 0.3833 | - | - |
| 0.0980 | 2200 | 0.3238 | - | - |
| 0.0985 | 2210 | 0.3871 | - | - |
| 0.0989 | 2220 | 0.4009 | - | - |
| 0.0994 | 2230 | 0.4115 | - | - |
| 0.0998 | 2240 | 0.4024 | - | - |
| 0.1003 | 2250 | 0.35 | - | - |
| 0.1007 | 2260 | 0.3649 | - | - |
| 0.1011 | 2270 | 0.3615 | - | - |
| 0.1016 | 2280 | 0.3898 | - | - |
| 0.1020 | 2290 | 0.3866 | - | - |
| 0.1025 | 2300 | 0.3904 | - | - |
| 0.1029 | 2310 | 0.3321 | - | - |
| 0.1034 | 2320 | 0.3803 | - | - |
| 0.1038 | 2330 | 0.3831 | - | - |
| 0.1043 | 2340 | 0.403 | - | - |
| 0.1047 | 2350 | 0.3803 | - | - |
| 0.1052 | 2360 | 0.3463 | - | - |
| 0.1056 | 2370 | 0.3987 | - | - |
| 0.1060 | 2380 | 0.3731 | - | - |
| 0.1065 | 2390 | 0.353 | - | - |
| 0.1069 | 2400 | 0.3166 | - | - |
| 0.1074 | 2410 | 0.3895 | - | - |
| 0.1078 | 2420 | 0.4025 | - | - |
| 0.1083 | 2430 | 0.3798 | - | - |
| 0.1087 | 2440 | 0.2991 | - | - |
| 0.1092 | 2450 | 0.3094 | - | - |
| 0.1096 | 2460 | 0.3669 | - | - |
| 0.1101 | 2470 | 0.3412 | - | - |
| 0.1105 | 2480 | 0.3697 | - | - |
| 0.1110 | 2490 | 0.369 | - | - |
| 0.1114 | 2500 | 0.3393 | - | - |
| 0.1118 | 2510 | 0.4232 | - | - |
| 0.1123 | 2520 | 0.3445 | - | - |
| 0.1127 | 2530 | 0.4165 | - | - |
| 0.1132 | 2540 | 0.3721 | - | - |
| 0.1136 | 2550 | 0.3476 | - | - |
| 0.1141 | 2560 | 0.2847 | - | - |
| 0.1145 | 2570 | 0.3609 | - | - |
| 0.1150 | 2580 | 0.3017 | - | - |
| 0.1154 | 2590 | 0.374 | - | - |
| 0.1159 | 2600 | 0.3365 | - | - |
| 0.1163 | 2610 | 0.393 | - | - |
| 0.1167 | 2620 | 0.3623 | - | - |
| 0.1172 | 2630 | 0.3538 | - | - |
| 0.1176 | 2640 | 0.3206 | - | - |
| 0.1181 | 2650 | 0.3962 | - | - |
| 0.1185 | 2660 | 0.3087 | - | - |
| 0.1190 | 2670 | 0.3482 | - | - |
| 0.1194 | 2680 | 0.3616 | - | - |
| 0.1199 | 2690 | 0.3955 | - | - |
| 0.1203 | 2700 | 0.3915 | - | - |
| 0.1208 | 2710 | 0.3782 | - | - |
| 0.1212 | 2720 | 0.3576 | - | - |
| 0.1216 | 2730 | 0.3544 | - | - |
| 0.1221 | 2740 | 0.3572 | - | - |
| 0.1225 | 2750 | 0.3107 | - | - |
| 0.1230 | 2760 | 0.3579 | - | - |
| 0.1234 | 2770 | 0.3571 | - | - |
| 0.1239 | 2780 | 0.3694 | - | - |
| 0.1243 | 2790 | 0.3674 | - | - |
| 0.1248 | 2800 | 0.3373 | - | - |
| 0.1252 | 2810 | 0.3362 | - | - |
| 0.1257 | 2820 | 0.3225 | - | - |
| 0.1261 | 2830 | 0.3609 | - | - |
| 0.1265 | 2840 | 0.3681 | - | - |
| 0.1270 | 2850 | 0.4059 | - | - |
| 0.1274 | 2860 | 0.3047 | - | - |
| 0.1279 | 2870 | 0.3446 | - | - |
| 0.1283 | 2880 | 0.3507 | - | - |
| 0.1288 | 2890 | 0.3124 | - | - |
| 0.1292 | 2900 | 0.3712 | - | - |
| 0.1297 | 2910 | 0.3394 | - | - |
| 0.1301 | 2920 | 0.3869 | - | - |
| 0.1306 | 2930 | 0.3449 | - | - |
| 0.1310 | 2940 | 0.3752 | - | - |
| 0.1314 | 2950 | 0.3341 | - | - |
| 0.1319 | 2960 | 0.3329 | - | - |
| 0.1323 | 2970 | 0.36 | - | - |
| 0.1328 | 2980 | 0.3788 | - | - |
| 0.1332 | 2990 | 0.3834 | - | - |
| 0.1337 | 3000 | 0.3426 | 0.7603 | 0.7590 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}