sypyp
commited on
Commit
·
462dcc6
1
Parent(s):
3b928bb
add readme
Browse files
readme.md
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Wan2.1 I2V model (720p)
|
| 2 |
+
|
| 3 |
+
example
|
| 4 |
+
|
| 5 |
+
```python
|
| 6 |
+
from diffusers.utils import load_image, export_to_video
|
| 7 |
+
from transformers import CLIPVisionModel, CLIPImageProcessor, UMT5EncoderModel, AutoTokenizer
|
| 8 |
+
from diffusers import WanI2VPipeline, WanTransformer3DModel, UniPCMultistepScheduler, AutoencoderKLWan
|
| 9 |
+
import torch
|
| 10 |
+
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained("google/umt5-xxl")
|
| 12 |
+
text_encoder = UMT5EncoderModel.from_pretrained("google/umt5-xxl", torch_dtype=torch.bfloat16)
|
| 13 |
+
vae = AutoencoderKLWan.from_pretrained("StevenZhang/Wan2.1-VAE_Diff")
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
pipe = WanI2VPipeline.from_pretrained(
|
| 17 |
+
'ypyp/wan2.1_i2v_720p',
|
| 18 |
+
tokenizer=tokenizer,
|
| 19 |
+
text_encoder=text_encoder,
|
| 20 |
+
vae=vae,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
image = load_image(
|
| 24 |
+
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"
|
| 25 |
+
)
|
| 26 |
+
device = "cuda"
|
| 27 |
+
seed = 0
|
| 28 |
+
prompt = ("An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in "
|
| 29 |
+
"the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot.")
|
| 30 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 31 |
+
|
| 32 |
+
pipe.to(device)
|
| 33 |
+
pipe.enable_model_cpu_offload()
|
| 34 |
+
|
| 35 |
+
inputs = {
|
| 36 |
+
'image': image,
|
| 37 |
+
"prompt": prompt,
|
| 38 |
+
'max_area': 720 * 1280,
|
| 39 |
+
"generator": generator,
|
| 40 |
+
"num_inference_steps": 50,
|
| 41 |
+
"guidance_scale": 5.0,
|
| 42 |
+
"num_frames": 81,
|
| 43 |
+
"max_sequence_length": 512,
|
| 44 |
+
"output_type": "np",
|
| 45 |
+
'flow_shift': 5.0
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
output = pipe(**inputs).frames[0]
|
| 49 |
+
export_to_video(output, "output.mp4", fps=15)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
```
|