--- license: cc-by-nc-sa-4.0 datasets: - Bubenpo/BreastDividerDataset language: - en pipeline_tag: image-segmentation tags: - medical --- # [MICCAI 2025 WOMEN] BreastDivider: A Large-Scale Dataset and Model for Left–Right Breast MRI Segmentation **Read the paper:** [![arXiv](https://img.shields.io/badge/arXiv-2507.13830-B31B1B.svg)](https://arxiv.org/abs/2507.13830) > **Authors**: Maximilian Rokuss\*, Benjamin Hamm\*, Yannick Kirchhoff\*, Klaus Maier-Hein > \*equal contribution --- ![BreastDivider Overview](assets/BreastDivider.png) ## 🧠 Introduction **Breast MRI** plays a pivotal role in breast cancer detection, diagnosis, and treatment planning. **BreastDivider** addresses a critical limitation in breast MRI segmentation: the lack of distinction between the **left and right breasts** in most public datasets and models. In this work, we introduce the **first publicly available large-scale dataset with explicit left and right breast segmentation labels**, comprising **over 13,000 3D MRI scans**. Accompanying this dataset is a **robust nnU-Net–based segmentation model**, trained specifically to identify and separate left and right breast regions in clinical MRI data. This effort provides a foundation for developing high-quality, anatomically aware tools for breast MRI analysis and offers opportunities for large-scale pretraining. 🗂 This repository contains the **model only**\ 📁 The dataset is available [here](https://huggingface.co/datasets/Bubenpo/BreastDividerDataset)\ 🐳 A prebuilt Docker image is available on [DockerHub](https://hub.docker.com/r/ykirchhoff/breastdivider) --- ## 🧪 Model The model is based on the [nnU-Net framework](https://github.com/MIC-DKFZ/nnUNet) and was trained on the full [BreastDivider dataset](https://huggingface.co/datasets/Bubenpo/BreastDividerDataset), using a custom configuration that allows both breasts to fit into a single 3D patch. It generalizes well across a variety of MRI modalities, including: - T1-weighted (T1) - T1 with contrast (T1+C) - T2-weighted (T2) - FLAIR - Diffusion-weighted imaging (DWI) ### 🔧 How to Use #### 🛠️ Manual Installation 1. Install nnU-Net following the official [installation instructions](https://github.com/MIC-DKFZ/nnUNet/blob/master/documentation/installation_instructions.md). 2. Download the model using git or the huggingface_hub (c.f. [models-downloading](https://huggingface.co/docs/hub/models-downloading)) 3. Run prediction with `nnUNetv2_predict_from_modelfolder -i input_folder -o output_folder -m /path/to/BreastDividerModel` #### 🐳 Docker inference You can use the prebuilt Docker container for easy deployment:\ **Pull the image:** ``` docker pull ykirchhoff/breastdivider:latest ``` **Run inference:** ``` docker run --ipc=host --rm --gpus all \ -v "/path/to/input/folder:/mnt/input" \ -v "/path/to/output/folder:/mnt/output" \ ykirchhoff/breastdivider:latest ``` --- ## 📄 Citation If you use this dataset or model in your work, please cite: ```bibtex @article{rokuss2025breastdivider, title = {Divide and Conquer: A Large-Scale Dataset and Model for Left–Right Breast MRI Segmentation}, author = {Rokuss, Maximilian and Hamm, Benjamin and Kirchhoff, Yannick and Maier-Hein, Klaus}, journal = {arXiv preprint arXiv:2507.13830}, year = {2025} } ```