File size: 9,173 Bytes
b8d82db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
# 🚀 Production Deployment Guide - Background Execution

## Hướng dẫn chạy toàn bộ hệ thống trong background với 32 CPU mỗi project

---

## 📋 Tổng Quan

Chạy đồng thời 2 pipelines:
- **ASR Translation**: 32 CPU workers
- **Chat Translation**: 32 CPU workers

Tổng cộng: **64 CPU cores** được sử dụng

---

## ⚙️ Cấu Hình

### 1. Kiểm Tra Resources

```bash
# Kiểm tra số CPU cores
nproc
# Hoặc
lscpu | grep "^CPU(s):"

# Kiểm tra RAM available
free -h

# Khuyến nghị:
# - Tối thiểu: 64 CPU cores
# - RAM: 16GB+ (256MB per worker = 64 workers x 256MB = 16GB)
```

### 2. Kiểm Tra VLLM Server

```bash
# Check VLLM đang chạy
curl http://localhost:8000/v1/models

# Nếu không thấy, khởi động VLLM:
CUDA_VISIBLE_DEVICES=4,5,6,7 vllm serve Qwen/Qwen3-Next-80B-A3B-Instruct \
  --port 8000 \
  --tensor-parallel-size 4 \
  --max-model-len 32768 \
  --max-num-batched-tokens 131072 \
  --gpu-memory-utilization 0.9 &
```

---

## 🎯 Method 1: Script Tự Động (Khuyến Nghị)

### Quick Start

```bash
cd /home/dungvpt/workspace/mlm_training/synthetic_projects

# Chạy cả hai pipelines với 32 workers mỗi cái
bash scripts/run_production_full.sh
```

### Script sẽ:
1. ✅ Kiểm tra VLLM server
2. ✅ Tạo output directories với timestamp
3. ✅ Chạy ASR translation (32 workers) trong background
4. ✅ Chạy Chat translation (32 workers) trong background
5. ✅ Lưu logs riêng cho mỗi pipeline
6. ✅ Hiển thị process IDs để monitor
7. ✅ Tự động resume nếu bị interrupt

---

## 🎯 Method 2: Manual Commands

### ASR Translation (32 Workers)

```bash
cd /home/dungvpt/workspace/mlm_training/synthetic_projects

# Chạy trong background với nohup
nohup python -m src.asr_translation.runner \
    --input translation_for_asr/telephone2000h.txt \
    --output-dir outputs/asr_translation \
    --num-workers 32 \
    --batch-size 64 \
    --checkpoint-interval 1000 \
    --use-json \
    > logs/asr_production.log 2>&1 &

# Lưu process ID
echo $! > logs/asr_pid.txt
echo "ASR Translation PID: $(cat logs/asr_pid.txt)"
```

### Chat Translation (32 Workers)

```bash
cd /home/dungvpt/workspace/mlm_training/synthetic_projects

# Chạy trong background với nohup
nohup python -m src.chat_translation.runner \
    --dataset tarudesu/VOZ-HSD \
    --output-dir outputs/chat_translation \
    --num-workers 32 \
    --batch-size 64 \
    --checkpoint-interval 1000 \
    --use-json \
    > logs/chat_production.log 2>&1 &

# Lưu process ID
echo $! > logs/chat_pid.txt
echo "Chat Translation PID: $(cat logs/chat_pid.txt)"
```

---

## 📊 Monitoring

### Real-time Progress Monitoring

```bash
# Monitor ASR translation
tail -f logs/asr_production.log

# Monitor Chat translation
tail -f logs/chat_production.log

# Monitor cả hai cùng lúc (split terminal)
# Terminal 1:
tail -f logs/asr_production.log

# Terminal 2:
tail -f logs/chat_translation.log
```

### Check Progress

```bash
# Đếm số results đã xử lý
wc -l outputs/asr_translation/asr_run_*/results.jsonl
wc -l outputs/chat_translation/chat_run_*/results.jsonl

# Xem kết quả mới nhất
tail -n 5 outputs/asr_translation/asr_run_*/results.jsonl | jq .
tail -n 5 outputs/chat_translation/chat_run_*/results.jsonl | jq .

# Theo dõi realtime
watch -n 5 'wc -l outputs/*/*/results.jsonl'
```

### System Resources

```bash
# CPU usage
top -u $USER

# hoặc htop (more user-friendly)
htop

# Process status
ps aux | grep "python -m src"

# Specific processes
ps -p $(cat logs/asr_pid.txt) -o pid,cmd,%cpu,%mem,etime
ps -p $(cat logs/chat_pid.txt) -o pid,cmd,%cpu,%mem,etime
```

---

## 🛑 Control Operations

### Stop Processes

```bash
# Stop gracefully (saves checkpoint)
kill -SIGINT $(cat logs/asr_pid.txt)
kill -SIGINT $(cat logs/chat_pid.txt)

# hoặc dùng script
bash scripts/stop_production.sh

# Force stop (only if graceful doesn't work)
kill -9 $(cat logs/asr_pid.txt)
kill -9 $(cat logs/chat_pid.txt)
```

### Pause & Resume

```bash
# Pause (không tốn CPU nhưng giữ memory)
kill -STOP $(cat logs/asr_pid.txt)
kill -STOP $(cat logs/chat_pid.txt)

# Resume
kill -CONT $(cat logs/asr_pid.txt)
kill -CONT $(cat logs/chat_pid.txt)
```

### Restart (Auto-Resume)

```bash
# Simply run the same command again
# Resume feature sẽ tự động skip những items đã xử lý
bash scripts/run_production_full.sh
```

---

## 📈 Performance Tuning

### For High Throughput

```bash
# Tăng workers và batch size
NUM_WORKERS=48 \
BATCH_SIZE=96 \
bash scripts/run_production_full.sh
```

### For Memory-Constrained Systems

```bash
# Giảm workers và batch size
NUM_WORKERS=16 \
BATCH_SIZE=32 \
bash scripts/run_production_full.sh
```

### Optimal Settings (64 cores available)

```bash
# 32 workers per pipeline = 64 total
NUM_WORKERS=32 \
BATCH_SIZE=64 \
CHECKPOINT_INTERVAL=500 \
bash scripts/run_production_full.sh
```

---

## 📁 Output Structure

```
outputs/
├── asr_translation/
│   └── asr_run_20250128_100000/
│       ├── results.jsonl              # Incremental results
│       └── checkpoints/
│           ├── checkpoint_00001000.jsonl
│           ├── checkpoint_00002000.jsonl
│           └── ...
├── chat_translation/
│   └── chat_run_20250128_100000/
│       ├── results.jsonl
│       └── checkpoints/
│           ├── checkpoint_00001000.jsonl
│           └── ...
└── logs/
    ├── asr_production.log
    ├── chat_production.log
    ├── asr_pid.txt
    └── chat_pid.txt
```

---

## ✅ Validation

### While Running

```bash
# Validate ASR results (sample)
head -n 100 outputs/asr_translation/asr_run_*/results.jsonl > /tmp/asr_sample.jsonl
python scripts/validate_asr_output.py /tmp/asr_sample.jsonl

# Validate Chat results (sample)
head -n 100 outputs/chat_translation/chat_run_*/results.jsonl > /tmp/chat_sample.jsonl
python scripts/validate_chat_output.py /tmp/chat_sample.jsonl
```

### After Completion

```bash
# Full validation
python scripts/validate_asr_output.py outputs/asr_translation/asr_run_*/results.jsonl
python scripts/validate_chat_output.py outputs/chat_translation/chat_run_*/results.jsonl

# Calculate statistics
bash scripts/calculate_stats.sh outputs/asr_translation/asr_run_*/results.jsonl
bash scripts/calculate_stats.sh outputs/chat_translation/chat_run_*/results.jsonl
```

---

## 🔧 Troubleshooting

### Issue: Process died unexpectedly

```bash
# Check logs for errors
tail -n 50 logs/asr_production.log
tail -n 50 logs/chat_production.log

# Check if process still running
ps -p $(cat logs/asr_pid.txt)
ps -p $(cat logs/chat_pid.txt)

# Restart with resume
bash scripts/run_production_full.sh
```

### Issue: VLLM server overloaded

```bash
# Check VLLM GPU usage
nvidia-smi

# Reduce number of workers temporarily
NUM_WORKERS=16 bash scripts/run_production_full.sh
```

### Issue: Out of memory

```bash
# Check memory usage
free -h

# Reduce workers
NUM_WORKERS=16 BATCH_SIZE=32 bash scripts/run_production_full.sh
```

### Issue: Slow processing

```bash
# Check CPU usage (should be ~100% per worker)
top

# Check VLLM server response time
curl -w "@-" -o /dev/null -s http://localhost:8000/v1/models <<'EOF'
    time_namelookup:  %{time_namelookup}\n
       time_connect:  %{time_connect}\n
          time_total:  %{time_total}\n
EOF

# Check network latency if VLLM is remote
```

---

## 📊 Expected Performance

### With 32 Workers Each

| Metric | ASR Translation | Chat Translation |
|--------|----------------|------------------|
| Workers | 32 | 32 |
| Throughput | ~160-320 req/sec | ~160-320 req/sec |
| Time per item | ~0.1-0.2s | ~0.1-0.2s |
| Memory usage | ~8-10GB | ~8-10GB |

### Estimated Completion Time

```
ASR Translation:
- Total items: 1,647,738
- Throughput: 200 req/sec
- Estimated time: ~2.3 hours

Chat Translation:
- Total items: 10,747,733
- Throughput: 200 req/sec
- Estimated time: ~15 hours
```

---

## 🎯 Best Practices

1. **Monitor early**: Watch first 1000 items for any issues
2. **Check quality**: Validate samples periodically
3. **Resource balance**: Don't overload VLLM server
4. **Backup logs**: Keep logs for debugging
5. **Resume friendly**: Use default resume mode
6. **Checkpoint often**: Keep checkpoint interval reasonable

---

## 📞 Quick Reference Commands

```bash
# Start production
bash scripts/run_production_full.sh

# Monitor
tail -f logs/asr_production.log
tail -f logs/chat_production.log

# Check progress
watch -n 5 'wc -l outputs/*/*/results.jsonl'

# Stop gracefully
bash scripts/stop_production.sh

# Validate
python scripts/validate_asr_output.py outputs/asr_translation/asr_run_*/results.jsonl
python scripts/validate_chat_output.py outputs/chat_translation/chat_run_*/results.jsonl
```

---

## ✨ Summary

**Configuration**: 32 workers per pipeline = 64 total workers  
**Resume**: Automatic, enabled by default  
**Saving**: Incremental, real-time  
**Monitoring**: Live logs and progress tracking  
**Recovery**: Checkpoint-based, no data loss  

**Ready for production! 🚀**