Create train.py
Browse filesRun this file to train models.
train.py
ADDED
|
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from lightning.pytorch import seed_everything
|
| 2 |
+
from lightning.pytorch.callbacks import ModelCheckpoint
|
| 3 |
+
from lightning.pytorch.callbacks.early_stopping import EarlyStopping
|
| 4 |
+
import lightning.pytorch as pl
|
| 5 |
+
from pytorch_lightning.loggers import TensorBoardLogger
|
| 6 |
+
import pandas as pd
|
| 7 |
+
from sklearn.model_selection import train_test_split
|
| 8 |
+
from transformers import AutoTokenizer
|
| 9 |
+
from ast import literal_eval
|
| 10 |
+
|
| 11 |
+
# imports from our own modules
|
| 12 |
+
import config
|
| 13 |
+
from model import (
|
| 14 |
+
BERTContrastiveLearning_simcse,
|
| 15 |
+
BERTContrastiveLearning_simcse_w,
|
| 16 |
+
BERTContrastiveLearning_samp,
|
| 17 |
+
BERTContrastiveLearning_samp_w,
|
| 18 |
+
)
|
| 19 |
+
from dataset import (
|
| 20 |
+
ContrastiveLearningDataModule_simcse,
|
| 21 |
+
ContrastiveLearningDataModule_simcse_w,
|
| 22 |
+
ContrastiveLearningDataModule_samp,
|
| 23 |
+
ContrastiveLearningDataModule_samp_w,
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
if __name__ == "__main__":
|
| 27 |
+
seed_everything(0, workers=True)
|
| 28 |
+
|
| 29 |
+
# Initialize tensorboard logger
|
| 30 |
+
logger = TensorBoardLogger("logs", name="MIMIC-tr")
|
| 31 |
+
|
| 32 |
+
query_df = pd.read_csv(
|
| 33 |
+
"/home/sunx/data/aiiih/projects/sunx/ccf_fuzzy_diag/data_proc/mimic_data/processed_train/processed.csv"
|
| 34 |
+
)
|
| 35 |
+
# query_df = query_df.head(1000)
|
| 36 |
+
query_df["concepts"] = query_df["concepts"].apply(literal_eval)
|
| 37 |
+
query_df["codes"] = query_df["codes"].apply(literal_eval)
|
| 38 |
+
query_df["codes"] = query_df["codes"].apply(
|
| 39 |
+
lambda x: [val for val in x if val is not None]
|
| 40 |
+
) # remove None in lists
|
| 41 |
+
query_df = query_df.drop(columns=["one_hot"])
|
| 42 |
+
train_df, val_df = train_test_split(query_df, test_size=config.split_ratio)
|
| 43 |
+
|
| 44 |
+
tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
|
| 45 |
+
|
| 46 |
+
sim_df = pd.read_csv(
|
| 47 |
+
"/home/sunx/data/aiiih/projects/sunx/ccf_fuzzy_diag/data_proc/pairwise_scores.csv"
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
all_d = pd.read_csv(
|
| 51 |
+
"/home/sunx/data/aiiih/projects/sunx/ccf_fuzzy_diag/data_proc/all_d_full.csv"
|
| 52 |
+
)
|
| 53 |
+
all_d["synonyms"] = all_d["synonyms"].apply(literal_eval)
|
| 54 |
+
all_d["ancestors"] = all_d["ancestors"].apply(literal_eval)
|
| 55 |
+
dictionary = dict(zip(all_d["concept"], all_d["synonyms"]))
|
| 56 |
+
|
| 57 |
+
# SimCSE
|
| 58 |
+
data_module1 = ContrastiveLearningDataModule_simcse(
|
| 59 |
+
train_df,
|
| 60 |
+
val_df,
|
| 61 |
+
tokenizer,
|
| 62 |
+
)
|
| 63 |
+
data_module1.setup()
|
| 64 |
+
|
| 65 |
+
print("Number of training data:", len(data_module1.train_dataset))
|
| 66 |
+
print("Number of validation data:", len(data_module1.val_dataset))
|
| 67 |
+
|
| 68 |
+
model1 = BERTContrastiveLearning_simcse(
|
| 69 |
+
n_batches=len(data_module1.train_dataset) / config.batch_size,
|
| 70 |
+
n_epochs=config.max_epochs,
|
| 71 |
+
lr=config.learning_rate,
|
| 72 |
+
unfreeze=config.unfreeze_ratio,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
checkpoint1 = ModelCheckpoint(
|
| 76 |
+
dirpath="/home/sunx/data/aiiih/projects/sunx/ccf_fuzzy_diag/train/ckpt/simcse/v1",
|
| 77 |
+
filename="{epoch}-{step}",
|
| 78 |
+
# save_weights_only=True,
|
| 79 |
+
save_last=True,
|
| 80 |
+
every_n_train_steps=config.log_every_n_steps,
|
| 81 |
+
monitor=None,
|
| 82 |
+
save_top_k=-1,
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
trainer1 = pl.Trainer(
|
| 86 |
+
accelerator=config.accelerator,
|
| 87 |
+
devices=config.devices,
|
| 88 |
+
strategy="ddp",
|
| 89 |
+
logger=logger,
|
| 90 |
+
max_epochs=config.max_epochs,
|
| 91 |
+
min_epochs=config.min_epochs,
|
| 92 |
+
precision=config.precision,
|
| 93 |
+
callbacks=[
|
| 94 |
+
EarlyStopping(
|
| 95 |
+
monitor="validation_loss", min_delta=1e-3, patience=3, mode="min"
|
| 96 |
+
),
|
| 97 |
+
checkpoint1,
|
| 98 |
+
],
|
| 99 |
+
profiler="simple",
|
| 100 |
+
log_every_n_steps=config.log_every_n_steps,
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
trainer1.fit(model1, data_module1)
|
| 104 |
+
|
| 105 |
+
# SimCSE_w
|
| 106 |
+
data_module2 = ContrastiveLearningDataModule_simcse_w(
|
| 107 |
+
train_df,
|
| 108 |
+
val_df,
|
| 109 |
+
query_df,
|
| 110 |
+
tokenizer,
|
| 111 |
+
sim_df,
|
| 112 |
+
all_d,
|
| 113 |
+
)
|
| 114 |
+
data_module2.setup()
|
| 115 |
+
|
| 116 |
+
print("Number of training data:", len(data_module2.train_dataset))
|
| 117 |
+
print("Number of validation data:", len(data_module2.val_dataset))
|
| 118 |
+
|
| 119 |
+
model2 = BERTContrastiveLearning_simcse_w(
|
| 120 |
+
n_batches=len(data_module2.train_dataset) / config.batch_size,
|
| 121 |
+
n_epochs=config.max_epochs,
|
| 122 |
+
lr=config.learning_rate,
|
| 123 |
+
unfreeze=config.unfreeze_ratio,
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
checkpoint2 = ModelCheckpoint(
|
| 127 |
+
dirpath="/home/sunx/data/aiiih/projects/sunx/ccf_fuzzy_diag/train/ckpt/simcse_w/v1",
|
| 128 |
+
filename="{epoch}-{step}",
|
| 129 |
+
# save_weights_only=True,
|
| 130 |
+
save_last=True,
|
| 131 |
+
every_n_train_steps=config.log_every_n_steps,
|
| 132 |
+
monitor=None,
|
| 133 |
+
save_top_k=-1,
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
trainer2 = pl.Trainer(
|
| 137 |
+
accelerator=config.accelerator,
|
| 138 |
+
devices=config.devices,
|
| 139 |
+
strategy="ddp",
|
| 140 |
+
logger=logger,
|
| 141 |
+
max_epochs=config.max_epochs,
|
| 142 |
+
min_epochs=config.min_epochs,
|
| 143 |
+
precision=config.precision,
|
| 144 |
+
callbacks=[
|
| 145 |
+
EarlyStopping(
|
| 146 |
+
monitor="validation_loss", min_delta=1e-3, patience=3, mode="min"
|
| 147 |
+
),
|
| 148 |
+
checkpoint2,
|
| 149 |
+
],
|
| 150 |
+
profiler="simple",
|
| 151 |
+
log_every_n_steps=config.log_every_n_steps,
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
trainer2.fit(model2, data_module2)
|
| 155 |
+
|
| 156 |
+
# Samp
|
| 157 |
+
data_module3 = ContrastiveLearningDataModule_samp(
|
| 158 |
+
train_df,
|
| 159 |
+
val_df,
|
| 160 |
+
query_df,
|
| 161 |
+
tokenizer,
|
| 162 |
+
dictionary,
|
| 163 |
+
sim_df,
|
| 164 |
+
)
|
| 165 |
+
data_module3.setup()
|
| 166 |
+
|
| 167 |
+
print("Number of training data:", len(data_module3.train_dataset))
|
| 168 |
+
print("Number of validation data:", len(data_module3.val_dataset))
|
| 169 |
+
|
| 170 |
+
model3 = BERTContrastiveLearning_samp(
|
| 171 |
+
n_batches=len(data_module3.train_dataset) / config.batch_size,
|
| 172 |
+
n_epochs=config.max_epochs,
|
| 173 |
+
lr=config.learning_rate,
|
| 174 |
+
unfreeze=config.unfreeze_ratio,
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
checkpoint3 = ModelCheckpoint(
|
| 178 |
+
dirpath="/home/sunx/data/aiiih/projects/sunx/ccf_fuzzy_diag/train/ckpt/samp/v1",
|
| 179 |
+
filename="{epoch}-{step}",
|
| 180 |
+
# save_weights_only=True,
|
| 181 |
+
save_last=True,
|
| 182 |
+
every_n_train_steps=config.log_every_n_steps,
|
| 183 |
+
monitor=None,
|
| 184 |
+
save_top_k=-1,
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
trainer3 = pl.Trainer(
|
| 188 |
+
accelerator=config.accelerator,
|
| 189 |
+
devices=config.devices,
|
| 190 |
+
strategy="ddp",
|
| 191 |
+
logger=logger,
|
| 192 |
+
max_epochs=config.max_epochs,
|
| 193 |
+
min_epochs=config.min_epochs,
|
| 194 |
+
precision=config.precision,
|
| 195 |
+
callbacks=[
|
| 196 |
+
EarlyStopping(
|
| 197 |
+
monitor="validation_loss", min_delta=1e-3, patience=3, mode="min"
|
| 198 |
+
),
|
| 199 |
+
checkpoint3,
|
| 200 |
+
],
|
| 201 |
+
profiler="simple",
|
| 202 |
+
log_every_n_steps=config.log_every_n_steps,
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
trainer3.fit(model3, data_module3)
|
| 206 |
+
|
| 207 |
+
# Samp_w
|
| 208 |
+
data_module4 = ContrastiveLearningDataModule_samp_w(
|
| 209 |
+
train_df,
|
| 210 |
+
val_df,
|
| 211 |
+
query_df,
|
| 212 |
+
tokenizer,
|
| 213 |
+
dictionary,
|
| 214 |
+
sim_df,
|
| 215 |
+
all_d,
|
| 216 |
+
)
|
| 217 |
+
data_module4.setup()
|
| 218 |
+
|
| 219 |
+
print("Number of training data:", len(data_module4.train_dataset))
|
| 220 |
+
print("Number of validation data:", len(data_module4.val_dataset))
|
| 221 |
+
|
| 222 |
+
model4 = BERTContrastiveLearning_samp_w(
|
| 223 |
+
n_batches=len(data_module4.train_dataset) / config.batch_size,
|
| 224 |
+
n_epochs=config.max_epochs,
|
| 225 |
+
lr=config.learning_rate,
|
| 226 |
+
unfreeze=config.unfreeze_ratio,
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
checkpoint4 = ModelCheckpoint(
|
| 230 |
+
dirpath="/home/sunx/data/aiiih/projects/sunx/ccf_fuzzy_diag/train/ckpt/samp_w/v1",
|
| 231 |
+
filename="{epoch}-{step}",
|
| 232 |
+
# save_weights_only=True,
|
| 233 |
+
save_last=True,
|
| 234 |
+
every_n_train_steps=config.log_every_n_steps,
|
| 235 |
+
monitor=None,
|
| 236 |
+
save_top_k=-1,
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
trainer4 = pl.Trainer(
|
| 240 |
+
accelerator=config.accelerator,
|
| 241 |
+
devices=config.devices,
|
| 242 |
+
strategy="ddp",
|
| 243 |
+
logger=logger,
|
| 244 |
+
max_epochs=config.max_epochs,
|
| 245 |
+
min_epochs=config.min_epochs,
|
| 246 |
+
precision=config.precision,
|
| 247 |
+
callbacks=[
|
| 248 |
+
EarlyStopping(
|
| 249 |
+
monitor="validation_loss", min_delta=1e-3, patience=3, mode="min"
|
| 250 |
+
),
|
| 251 |
+
checkpoint4,
|
| 252 |
+
],
|
| 253 |
+
profiler="simple",
|
| 254 |
+
log_every_n_steps=config.log_every_n_steps,
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
trainer4.fit(model4, data_module4)
|