Spaces:
Sleeping
Sleeping
| import os | |
| import subprocess | |
| import signal | |
| os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" | |
| import gradio as gr | |
| import tempfile | |
| from huggingface_hub import HfApi, ModelCard, whoami | |
| from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
| from pathlib import Path | |
| from textwrap import dedent | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| # used for restarting the space | |
| SPACE_ID = os.environ.get("SPACE_ID") | |
| HF_TOKEN = os.environ.get("HF_TOKEN") | |
| # Folder | |
| DOWNLOAD_FOLDER = "./downloads" | |
| OUTPUT_FOLDER = "./outputs" | |
| def create_folder(folder_name: str): | |
| if not os.path.exists(folder_name): | |
| print(f"Creating folder: {folder_name}") | |
| os.makedirs(folder_name) | |
| def is_valid_token(oauth_token): | |
| if oauth_token is None or oauth_token.token is None: | |
| return False | |
| try: | |
| whoami(oauth_token.token) | |
| except Exception as e: | |
| return False | |
| return True | |
| # escape HTML for logging | |
| def escape(s: str) -> str: | |
| s = s.replace("&", "&") # Must be done first! | |
| s = s.replace("<", "<") | |
| s = s.replace(">", ">") | |
| s = s.replace('"', """) | |
| s = s.replace("\n", "<br/>") | |
| return s | |
| def get_model_name(model_id: str): | |
| return model_id.split('/')[-1] | |
| def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str): | |
| if not os.path.isfile(model_path): | |
| raise Exception(f"Model file not found: {model_path}") | |
| print("Running imatrix command...") | |
| imatrix_command = [ | |
| "llama-imatrix", | |
| "-m", model_path, | |
| "-f", train_data_path, | |
| "-ngl", "99", | |
| "--output-frequency", "10", | |
| "-o", output_path, | |
| ] | |
| process = subprocess.Popen(imatrix_command, shell=False) | |
| try: | |
| process.wait(timeout=60) # added wait | |
| except subprocess.TimeoutExpired: | |
| print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...") | |
| process.send_signal(signal.SIGINT) | |
| try: | |
| process.wait(timeout=5) # grace period | |
| except subprocess.TimeoutExpired: | |
| print("Imatrix proc still didn't term. Forecfully terming process...") | |
| process.kill() | |
| print("Importance matrix generation completed.") | |
| def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None): | |
| print(f"Model path: {model_path}") | |
| print(f"Output dir: {outdir}") | |
| if is_valid_token(oauth_token) is False: | |
| raise gr.Error("You have to be logged in.") | |
| split_cmd = [ | |
| "llama-gguf-split", | |
| "--split", | |
| ] | |
| if split_max_size: | |
| split_cmd.append("--split-max-size") | |
| split_cmd.append(split_max_size) | |
| else: | |
| split_cmd.append("--split-max-tensors") | |
| split_cmd.append(str(split_max_tensors)) | |
| # args for output | |
| model_path_prefix = '.'.join(model_path.split('.')[:-1]) # remove the file extension | |
| split_cmd.append(model_path) | |
| split_cmd.append(model_path_prefix) | |
| print(f"Split command: {split_cmd}") | |
| result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True) | |
| print(f"Split command stdout: {result.stdout}") | |
| print(f"Split command stderr: {result.stderr}") | |
| if result.returncode != 0: | |
| stderr_str = result.stderr.decode("utf-8") | |
| raise Exception(f"Error splitting the model: {stderr_str}") | |
| print("Model split successfully!") | |
| # remove the original model file if needed | |
| if os.path.exists(model_path): | |
| os.remove(model_path) | |
| model_file_prefix = model_path_prefix.split('/')[-1] | |
| print(f"Model file name prefix: {model_file_prefix}") | |
| sharded_model_files = [f for f in os.listdir(outdir) if f.startswith(model_file_prefix) and f.endswith(".gguf")] | |
| if sharded_model_files: | |
| print(f"Sharded model files: {sharded_model_files}") | |
| api = HfApi(token=oauth_token.token) | |
| for file in sharded_model_files: | |
| file_path = os.path.join(outdir, file) | |
| try: | |
| print(f"Uploading file: {file_path}") | |
| api.upload_file( | |
| path_or_fileobj=file_path, | |
| path_in_repo=file, | |
| repo_id=repo_id, | |
| ) | |
| except Exception as e: | |
| raise Exception(f"Error uploading file {file_path}: {e}") | |
| else: | |
| raise Exception("No sharded files found.") | |
| print("Sharded model has been uploaded successfully!") | |
| def download_base_model(token: str, model_id: str, outdir: tempfile.TemporaryDirectory): | |
| model_name = get_model_name(model_id) | |
| with tempfile.TemporaryDirectory(dir=DOWNLOAD_FOLDER) as tmpdir: | |
| # Download model | |
| print(f"Downloading model {model_name}") | |
| local_dir = Path(tmpdir)/model_name # Keep the model name as the dirname so the model name metadata is populated correctly | |
| print(f"Local directory: {os.path.abspath(local_dir)}") | |
| api = HfApi(token=token) | |
| pattern = ( | |
| "*.safetensors" | |
| if any( | |
| file.path.endswith(".safetensors") | |
| for file in api.list_repo_tree( | |
| repo_id=model_id, | |
| recursive=True, | |
| ) | |
| ) | |
| else "*.bin" | |
| ) | |
| dl_pattern = ["*.md", "*.json", "*.model"] | |
| dl_pattern += [pattern] | |
| api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern) | |
| print("Model downloaded successfully!") | |
| print(f"Model directory contents: {os.listdir(local_dir)}") | |
| config_dir = local_dir/"config.json" | |
| adapter_config_dir = local_dir/"adapter_config.json" | |
| if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir): | |
| raise Exception('adapter_config.json is present.<br/><br/>If you are converting a LoRA adapter to GGUF, please use <a href="https://huggingface.co/spaces/ggml-org/gguf-my-lora" target="_blank" style="text-decoration:underline">GGUF-my-lora</a>.') | |
| # Convert HF to GGUF | |
| fp16_model = str(Path(outdir)/f"{model_name}_fp16.gguf") | |
| print(f"Converting to GGUF FP16: {os.path.abspath(fp16_model)}") | |
| result = subprocess.run( | |
| [ | |
| "python3", "/app/convert_hf_to_gguf.py", local_dir, "--outtype", "f16", "--outfile", fp16_model | |
| ], | |
| shell=False, | |
| capture_output=True | |
| ) | |
| print(f"Model directory contents: {result}") | |
| if result.returncode != 0: | |
| stderr_str = result.stderr.decode("utf-8") | |
| raise Exception(f"Error converting to fp16: {stderr_str}") | |
| print("Model converted to fp16 successfully!") | |
| print(f"Converted model path: {os.path.abspath(fp16_model)}") | |
| return fp16_model | |
| def quantize_model(outdir: tempfile.TemporaryDirectory, gguf_name: str, fp16, q_method: str, use_imatrix: bool, imatrix_q_method: str, imatrix_path: str): | |
| if use_imatrix: | |
| if train_data_file: | |
| train_data_path = train_data_file.name | |
| else: | |
| train_data_path = "train_data.txt" #fallback calibration dataset | |
| print(f"Training data file path: {train_data_path}") | |
| if not os.path.isfile(train_data_path): | |
| raise Exception(f"Training data file not found: {train_data_path}") | |
| generate_importance_matrix(fp16, train_data_path, imatrix_path) | |
| else: | |
| print("Not using imatrix quantization.") | |
| # Quantize the model | |
| quantized_gguf = str(Path(outdir)/gguf_name) | |
| if use_imatrix: | |
| quantize_cmd = [ | |
| "llama-quantize", | |
| "--imatrix", imatrix_path, fp16, quantized_gguf, imatrix_q_method | |
| ] | |
| else: | |
| quantize_cmd = [ | |
| "llama-quantize", | |
| fp16, quantized_gguf, q_method | |
| ] | |
| result = subprocess.run(quantize_cmd, shell=False, capture_output=True) | |
| if result.returncode != 0: | |
| stderr_str = result.stderr.decode("utf-8") | |
| raise Exception(f"Error quantizing: {stderr_str}") | |
| print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!") | |
| print(f"Quantized model path: {os.path.abspath(quantized_gguf)}") | |
| return quantized_gguf | |
| def process_model(model_id: str, q_method: str, use_imatrix: bool, imatrix_q_method: str, private_repo: bool, train_data_file, split_model: bool, split_max_tensors, split_max_size: str | None, repo_name: str, gguf_name: str, oauth_token: gr.OAuthToken | None): | |
| # validate the oauth token | |
| if is_valid_token(oauth_token) is False: | |
| raise gr.Error("You must be logged in to use GGUF-my-repo") | |
| print(f"Current working directory: {os.path.abspath(os.getcwd())}") | |
| create_folder(DOWNLOAD_FOLDER) | |
| create_folder(OUTPUT_FOLDER) | |
| try: | |
| with tempfile.TemporaryDirectory(dir=OUTPUT_FOLDER) as outdir: | |
| fp16 = download_base_model(oauth_token.token, model_id, outdir) | |
| imatrix_path = Path(outdir)/"imatrix.dat" | |
| quantized_gguf = quantize_model(outdir, gguf_name, fp16, q_method, use_imatrix, imatrix_q_method, imatrix_path) | |
| # Create empty repo | |
| api = HfApi(token=oauth_token.token) | |
| new_repo_url = api.create_repo(repo_id=repo_name, exist_ok=True, private=private_repo) | |
| new_repo_id = new_repo_url.repo_id | |
| print("Repo created successfully!", new_repo_url) | |
| try: | |
| card = ModelCard.load(model_id, token=oauth_token.token) | |
| except: | |
| card = ModelCard("") | |
| if card.data.tags is None: | |
| card.data.tags = [] | |
| card.data.tags.append("llama-cpp") | |
| card.data.tags.append("gguf-my-repo") | |
| card.data.base_model = model_id | |
| card.text = dedent( | |
| f""" | |
| # {new_repo_id} | |
| This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. | |
| Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model. | |
| ## Use with ollama | |
| Install ollama from the [official website](https://ollama.com/). | |
| Run the model on the CLI. | |
| ```sh | |
| ollama run hf.co/{model_id} | |
| ``` | |
| ## Use with llama.cpp | |
| Install llama.cpp through brew (works on Mac and Linux) | |
| ```bash | |
| brew install llama.cpp | |
| ``` | |
| Invoke the llama.cpp server or the CLI. | |
| ### CLI: | |
| ```bash | |
| llama-cli --hf-repo {new_repo_id} --hf-file {gguf_name} -p "The meaning to life and the universe is" | |
| ``` | |
| ### Server: | |
| ```bash | |
| llama-server --hf-repo {new_repo_id} --hf-file {gguf_name} -c 2048 | |
| ``` | |
| Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. | |
| Step 1: Clone llama.cpp from GitHub. | |
| ``` | |
| git clone https://github.com/ggerganov/llama.cpp | |
| ``` | |
| Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). | |
| ``` | |
| cd llama.cpp && LLAMA_CURL=1 make | |
| ``` | |
| Step 3: Run inference through the main binary. | |
| ``` | |
| ./llama-cli --hf-repo {new_repo_id} --hf-file {gguf_name} -p "The meaning to life and the universe is" | |
| ``` | |
| or | |
| ``` | |
| ./llama-server --hf-repo {new_repo_id} --hf-file {gguf_name} -c 2048 | |
| ``` | |
| """ | |
| ) | |
| readme_path = Path(outdir)/"README.md" | |
| card.save(readme_path) | |
| if split_model: | |
| split_upload_model(str(quantized_gguf), outdir, new_repo_id, oauth_token, split_max_tensors, split_max_size) | |
| else: | |
| try: | |
| print(f"Uploading quantized model: {quantized_gguf}") | |
| api.upload_file( | |
| path_or_fileobj=quantized_gguf, | |
| path_in_repo=gguf_name, | |
| repo_id=new_repo_id, | |
| ) | |
| except Exception as e: | |
| raise Exception(f"Error uploading quantized model: {e}") | |
| if os.path.isfile(imatrix_path): | |
| try: | |
| print(f"Uploading imatrix.dat: {imatrix_path}") | |
| api.upload_file( | |
| path_or_fileobj=imatrix_path, | |
| path_in_repo="imatrix.dat", | |
| repo_id=new_repo_id, | |
| ) | |
| except Exception as e: | |
| raise Exception(f"Error uploading imatrix.dat: {e}") | |
| api.upload_file( | |
| path_or_fileobj=readme_path, | |
| path_in_repo="README.md", | |
| repo_id=new_repo_id, | |
| ) | |
| print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!") | |
| # end of the TemporaryDirectory(dir="outputs") block; temporary outputs are deleted here | |
| return ( | |
| f'<h1>✅ DONE</h1><br/>Find your repo here: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{new_repo_id}</a>', | |
| "llama.png", | |
| ) | |
| except Exception as e: | |
| print((f"Error processing model: {e}")) | |
| return (f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{escape(str(e))}</pre>', "error.png") | |
| css="""/* Custom CSS to allow scrolling */ | |
| .gradio-container {overflow-y: auto;} | |
| """ | |
| ##### | |
| # Base model section | |
| ##### | |
| model_id = HuggingfaceHubSearch( | |
| label="Hub Model ID", | |
| placeholder="Search for model id on Huggingface", | |
| search_type="model", | |
| ) | |
| ##### | |
| # Quantization section | |
| ##### | |
| use_imatrix = gr.Checkbox( | |
| value=False, | |
| label="Use Imatrix Quantization", | |
| info="Use importance matrix for quantization." | |
| ) | |
| q_method = gr.Dropdown( | |
| ["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0", "F16", "BF16"], | |
| label="Quantization Method", | |
| info="GGML quantization type", | |
| value="Q4_K_M", | |
| filterable=False, | |
| visible=True | |
| ) | |
| imatrix_q_method = gr.Dropdown( | |
| ["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"], | |
| label="Imatrix Quantization Method", | |
| info="GGML imatrix quants type", | |
| value="IQ4_NL", | |
| filterable=False, | |
| visible=False | |
| ) | |
| train_data_file = gr.File( | |
| label="Training Data File", | |
| file_types=["txt"], | |
| visible=False | |
| ) | |
| def update_imatrix_visibility(use_imatrix): | |
| return gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix) | |
| ##### | |
| # Split model section | |
| ##### | |
| split_model = gr.Checkbox( | |
| value=False, | |
| label="Split Model", | |
| info="Shard the model using gguf-split." | |
| ) | |
| split_max_tensors = gr.Number( | |
| value=256, | |
| label="Max Tensors per File", | |
| info="Maximum number of tensors per file when splitting model.", | |
| visible=False | |
| ) | |
| split_max_size = gr.Textbox( | |
| label="Max File Size", | |
| info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G", | |
| visible=False | |
| ) | |
| def update_split_visibility(split_model): | |
| return gr.update(visible=split_model), gr.update(visible=split_model) | |
| ##### | |
| # Output Settings section | |
| ##### | |
| private_repo = gr.Checkbox( | |
| value=False, | |
| label="Private Repo", | |
| info="Create a private repo under your username." | |
| ) | |
| repo_name = gr.Textbox( | |
| label="Output Repository Name", | |
| info="Set your repository name", | |
| max_lines=1 | |
| ) | |
| gguf_name = gr.Textbox( | |
| label="Output File Name", | |
| info="Set output file name", | |
| max_lines=1 | |
| ) | |
| def update_output_repo(model_id, oauth_token: gr.OAuthToken | None): | |
| if oauth_token is None or oauth_token.token is None: | |
| return "" | |
| if model_id is None: | |
| return "" | |
| username = whoami(oauth_token.token)["name"] | |
| model_name = get_model_name(model_id) | |
| return f"{username}/{model_name}-GGUF" | |
| def update_output_filename(model_id, use_imatrix, q_method, imatrix_q_method): | |
| if model_id is None: | |
| return "" | |
| model_name = get_model_name(model_id) | |
| if use_imatrix: | |
| return f"{model_name}-{imatrix_q_method.upper()}-imat.gguf" | |
| return f"{model_name}-{q_method.upper()}.gguf" | |
| ##### | |
| # Buttons section | |
| ##### | |
| clear_btn = gr.ClearButton( | |
| value="Clear", | |
| variant="secondary", | |
| components=[ | |
| model_id, | |
| q_method, | |
| use_imatrix, | |
| imatrix_q_method, | |
| private_repo, | |
| train_data_file, | |
| split_model, | |
| split_max_tensors, | |
| split_max_size, | |
| repo_name, | |
| gguf_name, | |
| ] | |
| ) | |
| submit_btn = gr.Button( | |
| value="Submit", | |
| variant="primary" | |
| ) | |
| ##### | |
| # Outputs section | |
| ##### | |
| output_label = gr.Markdown(label="output") | |
| output_image = gr.Image( | |
| show_label=False, | |
| show_download_button=False, | |
| interactive=False | |
| ) | |
| # Create Gradio interface | |
| with gr.Blocks(css=css) as demo: | |
| ##### | |
| # Layout | |
| ##### | |
| gr.Markdown("You must be logged in to use GGUF-my-repo.") | |
| gr.LoginButton(min_width=250) | |
| gr.HTML("<h1 style=\"text-aling:center;\">Create your own GGUF Quants!</h1>") | |
| gr.Markdown("The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.") | |
| with gr.Row(): | |
| with gr.Column() as inputs: | |
| gr.Markdown("### Model Configuration") | |
| model_id.render() | |
| with gr.Column(): | |
| use_imatrix.render() | |
| q_method.render() | |
| imatrix_q_method.render() | |
| train_data_file.render() | |
| gr.Markdown("### Advanced Options") | |
| split_model.render() | |
| with gr.Row() as split_options: # Group split options | |
| split_max_tensors.render() | |
| split_max_size.render() | |
| gr.Markdown("### Output Settings") | |
| gr.Markdown("You can customize settings for your GGUF repo.") | |
| private_repo.render() | |
| with gr.Row(): | |
| repo_name.render() | |
| gguf_name.render() | |
| with gr.Row() as buttons: | |
| clear_btn.render() | |
| submit_btn.render() | |
| with gr.Column() as outputs: | |
| output_label.render() | |
| output_image.render() | |
| ##### | |
| # Button Click handlers | |
| ##### | |
| submit_btn.click( | |
| fn=process_model, | |
| inputs=[ | |
| model_id, | |
| q_method, | |
| use_imatrix, | |
| imatrix_q_method, | |
| private_repo, | |
| train_data_file, | |
| split_model, | |
| split_max_tensors, | |
| split_max_size, | |
| repo_name, | |
| gguf_name, | |
| ], | |
| outputs=[ | |
| output_label, | |
| output_image, | |
| ], | |
| ) | |
| ##### | |
| # OnChange handlers | |
| ##### | |
| split_model.change( | |
| fn=update_split_visibility, | |
| inputs=split_model, | |
| outputs=[split_max_tensors, split_max_size] | |
| ) | |
| use_imatrix.change( | |
| fn=update_imatrix_visibility, | |
| inputs=use_imatrix, | |
| outputs=[q_method, imatrix_q_method, train_data_file] | |
| ) | |
| model_id.change( | |
| fn=update_output_repo, | |
| inputs=model_id, | |
| outputs=[repo_name] | |
| ) | |
| model_id.change( | |
| fn=update_output_filename, | |
| inputs=[model_id, use_imatrix, q_method, imatrix_q_method], | |
| outputs=[gguf_name] | |
| ) | |
| use_imatrix.change( | |
| fn=update_output_filename, | |
| inputs=[model_id, use_imatrix, q_method, imatrix_q_method], | |
| outputs=[gguf_name] | |
| ) | |
| q_method.change( | |
| fn=update_output_filename, | |
| inputs=[model_id, use_imatrix, q_method, imatrix_q_method], | |
| outputs=[gguf_name] | |
| ) | |
| imatrix_q_method.change( | |
| fn=update_output_filename, | |
| inputs=[model_id, use_imatrix, q_method, imatrix_q_method], | |
| outputs=[gguf_name] | |
| ) | |
| def restart_space(): | |
| HfApi().restart_space(repo_id=SPACE_ID, token=HF_TOKEN, factory_reboot=True) | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=21600) | |
| scheduler.start() | |
| # Launch the interface | |
| demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False) | |