tet-ana commited on
Commit
76a1a6d
·
verified ·
1 Parent(s): 1b5e156

upload app.py

Browse files
Files changed (1) hide show
  1. app.py +81 -64
app.py CHANGED
@@ -1,64 +1,81 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from coordinator_agent import coordinator_agent
2
+ from coordinator_agent_langgraph import AgentState, coordinator_graph
3
+ from dotenv import load_dotenv
4
+ from langchain_core.messages import convert_to_messages
5
+ import gradio as gr
6
+ from langchain_google_genai import ChatGoogleGenerativeAI
7
+
8
+ load_dotenv()
9
+
10
+
11
+
12
+ # demo = gr.Interface(
13
+ # fn=lambda query: "\n\n".join(
14
+ # f"🔹 {msg.name if hasattr(msg, 'name') else 'Agent'}:\n{msg.content}"
15
+ # for msg in coordinator_agent.invoke({"messages": [{"role": "user", "content": query}]}).get("messages", [])
16
+ # if hasattr(msg, "content") and msg.content
17
+ # ),
18
+ # inputs=gr.Textbox(label="📝 Frag etwas zum Markt", placeholder="z.B. Was gibt es Neues bei NVIDIA?"),
19
+ # outputs=gr.Textbox(label="🤖 Antwort der Agenten"),
20
+ # title="📊 Multimodaler Markt-Analyst (Gradio)",
21
+ # description="Ein intelligentes System zur Analyse von Marktinformationen mit mehreren Agenten.",
22
+ # )
23
+
24
+ # Langchain Version
25
+ def run_supervisor_full(query):
26
+ result = coordinator_agent.invoke({"messages": [{"role": "user", "content": query}]})
27
+ history = result.get("messages", [])
28
+
29
+ chunks = []
30
+ for msg in history:
31
+ name = getattr(msg, "name", "Agent")
32
+ if hasattr(msg, "content") and msg.content:
33
+ content = msg.content
34
+ elif hasattr(msg, "tool_call_id"):
35
+ content = f"[→ Übergabe an Tool: {msg.tool}]"
36
+ else:
37
+ continue
38
+ chunks.append(f"🔹 {name}:\n{content}")
39
+
40
+ return "\n\n".join(chunks)
41
+ # demo = gr.Interface(
42
+ # fn=lambda query: "\n\n".join(
43
+ # f"🔹 {msg.name if hasattr(msg, 'name') else 'Agent'}:\n"
44
+ # f"{msg.content}"
45
+ # + (f"\n\n🔗 Quelle: {msg.metadata.get('source')}" if hasattr(msg, "metadata") and "source" in msg.metadata else "")
46
+ # for msg in coordinator_agent.invoke({"messages": [{"role": "user", "content": query}]}).get("messages", [])
47
+ # if hasattr(msg, "content") and msg.content
48
+ # ),
49
+ # inputs=gr.Textbox(label="📝 Frag etwas zum Markt", placeholder="z.B. Was gibt es Neues bei NVIDIA?"),
50
+ # outputs=gr.Textbox(label="🤖 Antwort der Agenten"),
51
+ # title="📊 Multimodaler Markt-Analyst (Gradio)",
52
+ # description="Ein intelligentes System zur Analyse von Marktinformationen mit mehreren Agenten.",
53
+ # )
54
+
55
+ demo = gr.Interface(
56
+ fn=run_supervisor_full,
57
+ inputs=gr.Textbox(label="📝 Marktfrage", placeholder="z. B. Wie war die Performance von NVIDIA 2023?"),
58
+ outputs=gr.Textbox(label="🤖 Antwortverlauf"),
59
+ title="🧠 Koordinator-Agent mit LangGraph",
60
+ description="Automatisches Routing zu spezialisierten Agenten mit vollständigem Nachrichtenverlauf."
61
+ )
62
+
63
+
64
+ # Langgraph Version
65
+ # def run_coordinator(user_input):
66
+ # result = coordinator_graph.invoke(AgentState({"input": user_input}))
67
+ # return result.get("response", "Keine Antwort erhalten.")
68
+ # demo = gr.Interface(
69
+ # fn=run_coordinator,
70
+ # inputs=gr.Textbox(label="📝 Deine Marktfrage", placeholder="z. B. Wie war NVIDIAs Ergebnis 2023?"),
71
+ # outputs=gr.Textbox(label="🤖 Antwort vom System"),
72
+ # title="📊 Multimodaler Markt-Analyst (LangGraph)",
73
+ # description="Ein intelligentes System mit mehreren spezialisierten Agenten (Finanz, Analyse, Web)."
74
+ # )
75
+
76
+ if __name__ == "__main__":
77
+ # user_question = "Wie war die Performance von Apple im Jahr 2023?"
78
+ # print("▶️ Direktaufruf:")
79
+ # print(run_coordinator(user_question))
80
+ demo.launch()
81
+