Spaces:
Runtime error
Runtime error
upload app.py
Browse files
app.py
CHANGED
|
@@ -1,64 +1,81 @@
|
|
| 1 |
-
|
| 2 |
-
from
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
)
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
for
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
""
|
| 44 |
-
|
| 45 |
-
"""
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from coordinator_agent import coordinator_agent
|
| 2 |
+
from coordinator_agent_langgraph import AgentState, coordinator_graph
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
from langchain_core.messages import convert_to_messages
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 7 |
+
|
| 8 |
+
load_dotenv()
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# demo = gr.Interface(
|
| 13 |
+
# fn=lambda query: "\n\n".join(
|
| 14 |
+
# f"🔹 {msg.name if hasattr(msg, 'name') else 'Agent'}:\n{msg.content}"
|
| 15 |
+
# for msg in coordinator_agent.invoke({"messages": [{"role": "user", "content": query}]}).get("messages", [])
|
| 16 |
+
# if hasattr(msg, "content") and msg.content
|
| 17 |
+
# ),
|
| 18 |
+
# inputs=gr.Textbox(label="📝 Frag etwas zum Markt", placeholder="z.B. Was gibt es Neues bei NVIDIA?"),
|
| 19 |
+
# outputs=gr.Textbox(label="🤖 Antwort der Agenten"),
|
| 20 |
+
# title="📊 Multimodaler Markt-Analyst (Gradio)",
|
| 21 |
+
# description="Ein intelligentes System zur Analyse von Marktinformationen mit mehreren Agenten.",
|
| 22 |
+
# )
|
| 23 |
+
|
| 24 |
+
# Langchain Version
|
| 25 |
+
def run_supervisor_full(query):
|
| 26 |
+
result = coordinator_agent.invoke({"messages": [{"role": "user", "content": query}]})
|
| 27 |
+
history = result.get("messages", [])
|
| 28 |
+
|
| 29 |
+
chunks = []
|
| 30 |
+
for msg in history:
|
| 31 |
+
name = getattr(msg, "name", "Agent")
|
| 32 |
+
if hasattr(msg, "content") and msg.content:
|
| 33 |
+
content = msg.content
|
| 34 |
+
elif hasattr(msg, "tool_call_id"):
|
| 35 |
+
content = f"[→ Übergabe an Tool: {msg.tool}]"
|
| 36 |
+
else:
|
| 37 |
+
continue
|
| 38 |
+
chunks.append(f"🔹 {name}:\n{content}")
|
| 39 |
+
|
| 40 |
+
return "\n\n".join(chunks)
|
| 41 |
+
# demo = gr.Interface(
|
| 42 |
+
# fn=lambda query: "\n\n".join(
|
| 43 |
+
# f"🔹 {msg.name if hasattr(msg, 'name') else 'Agent'}:\n"
|
| 44 |
+
# f"{msg.content}"
|
| 45 |
+
# + (f"\n\n🔗 Quelle: {msg.metadata.get('source')}" if hasattr(msg, "metadata") and "source" in msg.metadata else "")
|
| 46 |
+
# for msg in coordinator_agent.invoke({"messages": [{"role": "user", "content": query}]}).get("messages", [])
|
| 47 |
+
# if hasattr(msg, "content") and msg.content
|
| 48 |
+
# ),
|
| 49 |
+
# inputs=gr.Textbox(label="📝 Frag etwas zum Markt", placeholder="z.B. Was gibt es Neues bei NVIDIA?"),
|
| 50 |
+
# outputs=gr.Textbox(label="🤖 Antwort der Agenten"),
|
| 51 |
+
# title="📊 Multimodaler Markt-Analyst (Gradio)",
|
| 52 |
+
# description="Ein intelligentes System zur Analyse von Marktinformationen mit mehreren Agenten.",
|
| 53 |
+
# )
|
| 54 |
+
|
| 55 |
+
demo = gr.Interface(
|
| 56 |
+
fn=run_supervisor_full,
|
| 57 |
+
inputs=gr.Textbox(label="📝 Marktfrage", placeholder="z. B. Wie war die Performance von NVIDIA 2023?"),
|
| 58 |
+
outputs=gr.Textbox(label="🤖 Antwortverlauf"),
|
| 59 |
+
title="🧠 Koordinator-Agent mit LangGraph",
|
| 60 |
+
description="Automatisches Routing zu spezialisierten Agenten mit vollständigem Nachrichtenverlauf."
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
# Langgraph Version
|
| 65 |
+
# def run_coordinator(user_input):
|
| 66 |
+
# result = coordinator_graph.invoke(AgentState({"input": user_input}))
|
| 67 |
+
# return result.get("response", "Keine Antwort erhalten.")
|
| 68 |
+
# demo = gr.Interface(
|
| 69 |
+
# fn=run_coordinator,
|
| 70 |
+
# inputs=gr.Textbox(label="📝 Deine Marktfrage", placeholder="z. B. Wie war NVIDIAs Ergebnis 2023?"),
|
| 71 |
+
# outputs=gr.Textbox(label="🤖 Antwort vom System"),
|
| 72 |
+
# title="📊 Multimodaler Markt-Analyst (LangGraph)",
|
| 73 |
+
# description="Ein intelligentes System mit mehreren spezialisierten Agenten (Finanz, Analyse, Web)."
|
| 74 |
+
# )
|
| 75 |
+
|
| 76 |
+
if __name__ == "__main__":
|
| 77 |
+
# user_question = "Wie war die Performance von Apple im Jahr 2023?"
|
| 78 |
+
# print("▶️ Direktaufruf:")
|
| 79 |
+
# print(run_coordinator(user_question))
|
| 80 |
+
demo.launch()
|
| 81 |
+
|