Spaces:
Running
Running
Create app_gpu.py
Browse files- app_gpu.py +307 -0
app_gpu.py
ADDED
|
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# universal_lora_trainer_accelerate_singlefile_dynamic.py
|
| 2 |
+
"""
|
| 3 |
+
Universal Dynamic LoRA Trainer (Accelerate + PEFT + Gradio)
|
| 4 |
+
- Gemma LLM default
|
| 5 |
+
- Robust batch handling (fixes KeyError: 0)
|
| 6 |
+
- Streams logs to Gradio (includes progress %)
|
| 7 |
+
- Supports CSV/Parquet HuggingFace or local datasets
|
| 8 |
+
"""
|
| 9 |
+
import spaces
|
| 10 |
+
import torch
|
| 11 |
+
from huggingface_hub import create_repo, upload_folder
|
| 12 |
+
|
| 13 |
+
import os
|
| 14 |
+
import torch
|
| 15 |
+
import gradio as gr
|
| 16 |
+
import pandas as pd
|
| 17 |
+
import numpy as np
|
| 18 |
+
from pathlib import Path
|
| 19 |
+
from torch.utils.data import Dataset, DataLoader
|
| 20 |
+
from peft import LoraConfig, get_peft_model
|
| 21 |
+
from accelerate import Accelerator
|
| 22 |
+
from huggingface_hub import hf_hub_download, create_repo, upload_folder
|
| 23 |
+
|
| 24 |
+
# transformers optional
|
| 25 |
+
try:
|
| 26 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 27 |
+
TRANSFORMERS_AVAILABLE = True
|
| 28 |
+
except Exception:
|
| 29 |
+
TRANSFORMERS_AVAILABLE = False
|
| 30 |
+
|
| 31 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 32 |
+
|
| 33 |
+
# ---------------- Helpers ----------------
|
| 34 |
+
def is_hub_repo_like(s):
|
| 35 |
+
return "/" in s and not Path(s).exists()
|
| 36 |
+
|
| 37 |
+
def download_from_hf(repo_id, filename, token=None):
|
| 38 |
+
token = token or os.environ.get("HF_TOKEN")
|
| 39 |
+
return hf_hub_download(repo_id=repo_id, filename=filename, repo_type="dataset", token=token)
|
| 40 |
+
|
| 41 |
+
# ---------------- Dataset ----------------
|
| 42 |
+
class MediaTextDataset(Dataset):
|
| 43 |
+
def __init__(self, source, csv_name="dataset.csv", text_columns=None, max_records=None):
|
| 44 |
+
self.is_hub = is_hub_repo_like(source)
|
| 45 |
+
token = os.environ.get("HF_TOKEN")
|
| 46 |
+
if self.is_hub:
|
| 47 |
+
file_path = download_from_hf(source, csv_name, token)
|
| 48 |
+
else:
|
| 49 |
+
file_path = Path(source) / csv_name
|
| 50 |
+
|
| 51 |
+
# fallback to parquet if CSV missing
|
| 52 |
+
if not Path(file_path).exists():
|
| 53 |
+
alt = Path(str(file_path).replace(".csv", ".parquet"))
|
| 54 |
+
if alt.exists():
|
| 55 |
+
file_path = alt
|
| 56 |
+
else:
|
| 57 |
+
raise FileNotFoundError(f"Dataset file not found: {file_path}")
|
| 58 |
+
|
| 59 |
+
self.df = pd.read_parquet(file_path) if str(file_path).endswith(".parquet") else pd.read_csv(file_path)
|
| 60 |
+
if max_records:
|
| 61 |
+
self.df = self.df.head(max_records)
|
| 62 |
+
|
| 63 |
+
self.text_columns = text_columns or ["short_prompt", "long_prompt"]
|
| 64 |
+
|
| 65 |
+
print(f"[DEBUG] Loaded dataset: {file_path}, columns: {list(self.df.columns)}")
|
| 66 |
+
print(f"[DEBUG] Sample rows:\n{self.df.head(3)}")
|
| 67 |
+
|
| 68 |
+
def __len__(self):
|
| 69 |
+
return len(self.df)
|
| 70 |
+
|
| 71 |
+
def __getitem__(self, i):
|
| 72 |
+
rec = self.df.iloc[i]
|
| 73 |
+
out = {"text": {}}
|
| 74 |
+
for col in self.text_columns:
|
| 75 |
+
out["text"][col] = rec[col] if col in rec else ""
|
| 76 |
+
return out
|
| 77 |
+
|
| 78 |
+
# ---------------- Model loader ----------------
|
| 79 |
+
def load_pipeline_auto(base_model, dtype=torch.float16):
|
| 80 |
+
if "gemma" in base_model.lower():
|
| 81 |
+
if not TRANSFORMERS_AVAILABLE:
|
| 82 |
+
raise RuntimeError("Transformers not installed for LLM support.")
|
| 83 |
+
print(f"[INFO] Using Gemma LLM for {base_model}")
|
| 84 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
| 85 |
+
model = AutoModelForCausalLM.from_pretrained(base_model, torch_dtype=dtype)
|
| 86 |
+
return {"model": model, "tokenizer": tokenizer}
|
| 87 |
+
else:
|
| 88 |
+
raise NotImplementedError("Only Gemma LLM supported in this script.")
|
| 89 |
+
|
| 90 |
+
def find_target_modules(model):
|
| 91 |
+
candidates = ["q_proj", "k_proj", "v_proj", "out_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
|
| 92 |
+
names = [n for n, m in model.named_modules() if isinstance(m, torch.nn.Linear)]
|
| 93 |
+
targets = [n.split(".")[-1] for n in names if any(c in n for c in candidates)]
|
| 94 |
+
if not targets:
|
| 95 |
+
targets = [n.split(".")[-1] for n, m in model.named_modules() if isinstance(m, torch.nn.Linear)]
|
| 96 |
+
print(f"[WARNING] No standard attention modules found, using Linear layers for LoRA.")
|
| 97 |
+
else:
|
| 98 |
+
print(f"[INFO] LoRA target modules detected: {targets[:40]}{'...' if len(targets)>40 else ''}")
|
| 99 |
+
return targets
|
| 100 |
+
|
| 101 |
+
# ---------------- Batch unwrapping ----------------
|
| 102 |
+
def unwrap_batch(batch, short_col, long_col):
|
| 103 |
+
if isinstance(batch, (list, tuple)):
|
| 104 |
+
ex = batch[0]
|
| 105 |
+
if "text" in ex:
|
| 106 |
+
return ex
|
| 107 |
+
if "short" in ex and "long" in ex:
|
| 108 |
+
return {"text": {short_col: ex.get("short",""), long_col: ex.get("long","")}}
|
| 109 |
+
return {"text": ex}
|
| 110 |
+
|
| 111 |
+
if isinstance(batch, dict):
|
| 112 |
+
first_elem = {}
|
| 113 |
+
is_batched = any(isinstance(v, (list, tuple, np.ndarray, torch.Tensor)) for v in batch.values())
|
| 114 |
+
if is_batched:
|
| 115 |
+
for k, v in batch.items():
|
| 116 |
+
try: first = v[0]
|
| 117 |
+
except Exception: first = v
|
| 118 |
+
first_elem[k] = first
|
| 119 |
+
if "text" in first_elem:
|
| 120 |
+
t = first_elem["text"]
|
| 121 |
+
if isinstance(t, (list, tuple)) and len(t) > 0:
|
| 122 |
+
return {"text": t[0] if isinstance(t[0], dict) else {short_col: t[0], long_col: ""}}
|
| 123 |
+
if isinstance(t, dict): return {"text": t}
|
| 124 |
+
return {"text": {short_col: str(t), long_col: ""}}
|
| 125 |
+
if ("short" in first_elem and "long" in first_elem) or (short_col in first_elem and long_col in first_elem):
|
| 126 |
+
s = first_elem.get(short_col, first_elem.get("short", ""))
|
| 127 |
+
l = first_elem.get(long_col, first_elem.get("long", ""))
|
| 128 |
+
return {"text": {short_col: str(s), long_col: str(l)}}
|
| 129 |
+
return {"text": {short_col: str(first_elem)}}
|
| 130 |
+
if "text" in batch and isinstance(batch["text"], dict):
|
| 131 |
+
return {"text": batch["text"]}
|
| 132 |
+
s = batch.get(short_col, batch.get("short", ""))
|
| 133 |
+
l = batch.get(long_col, batch.get("long", ""))
|
| 134 |
+
return {"text": {short_col: str(s), long_col: str(l)}}
|
| 135 |
+
return {"text": {short_col: str(batch), long_col: ""}}
|
| 136 |
+
|
| 137 |
+
# ---------------- Training (forward + backward + logs) ----------------
|
| 138 |
+
import spaces
|
| 139 |
+
import torch
|
| 140 |
+
from huggingface_hub import create_repo, upload_folder
|
| 141 |
+
|
| 142 |
+
@spaces.GPU(duration=120)
|
| 143 |
+
def train_lora_stream(base_model, dataset_src, csv_name, text_cols, output_dir,
|
| 144 |
+
epochs=1, lr=1e-4, r=8, alpha=16, batch_size=1, num_workers=0,
|
| 145 |
+
max_train_records=None, repo_id=None):
|
| 146 |
+
"""LoRA training loop with GPU + auto upload support."""
|
| 147 |
+
|
| 148 |
+
# --- Device setup ---
|
| 149 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 150 |
+
gpu_name = torch.cuda.get_device_name(0) if device == "cuda" else "CPU"
|
| 151 |
+
print(f"[INFO] π Using device: {device.upper()} ({gpu_name})")
|
| 152 |
+
|
| 153 |
+
# Adjust precision / batch based on VRAM
|
| 154 |
+
if device == "cuda":
|
| 155 |
+
vram = torch.cuda.get_device_properties(0).total_memory / (1024**3)
|
| 156 |
+
print(f"[INFO] VRAM: {vram:.2f} GB")
|
| 157 |
+
dtype = torch.bfloat16 if "A100" in gpu_name or vram > 20 else torch.float16
|
| 158 |
+
if vram < 10:
|
| 159 |
+
batch_size = max(1, batch_size // 2)
|
| 160 |
+
print(f"[WARN] Low VRAM, using batch_size={batch_size}")
|
| 161 |
+
else:
|
| 162 |
+
dtype = torch.float32
|
| 163 |
+
|
| 164 |
+
# --- Model & tokenizer ---
|
| 165 |
+
accelerator = Accelerator()
|
| 166 |
+
pipe = load_pipeline_auto(base_model, dtype=dtype)
|
| 167 |
+
model_obj = pipe["model"]
|
| 168 |
+
tokenizer = pipe["tokenizer"]
|
| 169 |
+
|
| 170 |
+
model_obj.train()
|
| 171 |
+
target_modules = find_target_modules(model_obj)
|
| 172 |
+
lcfg = LoraConfig(r=r, lora_alpha=alpha, target_modules=target_modules, lora_dropout=0.0)
|
| 173 |
+
lora_module = get_peft_model(model_obj, lcfg)
|
| 174 |
+
|
| 175 |
+
# --- Dataset ---
|
| 176 |
+
dataset = MediaTextDataset(dataset_src, csv_name, text_columns=text_cols, max_records=max_train_records)
|
| 177 |
+
loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
|
| 178 |
+
optimizer = torch.optim.AdamW(lora_module.parameters(), lr=lr)
|
| 179 |
+
lora_module, optimizer, loader = accelerator.prepare(lora_module, optimizer, loader)
|
| 180 |
+
|
| 181 |
+
total_steps = max(1, epochs * len(loader))
|
| 182 |
+
step_counter = 0
|
| 183 |
+
logs = []
|
| 184 |
+
|
| 185 |
+
yield f"[INFO] Starting LoRA training on {gpu_name}...\n", 0.0
|
| 186 |
+
|
| 187 |
+
# --- Training Loop ---
|
| 188 |
+
for ep in range(epochs):
|
| 189 |
+
yield f"[DEBUG] Epoch {ep+1}/{epochs}\n", step_counter / total_steps
|
| 190 |
+
for i, batch in enumerate(loader):
|
| 191 |
+
ex = unwrap_batch(batch, text_cols[0], text_cols[1])
|
| 192 |
+
texts = ex.get("text", {})
|
| 193 |
+
short_text = str(texts.get(text_cols[0], "") or "")
|
| 194 |
+
long_text = str(texts.get(text_cols[1], "") or "")
|
| 195 |
+
|
| 196 |
+
enc = tokenizer(
|
| 197 |
+
short_text,
|
| 198 |
+
text_pair=long_text,
|
| 199 |
+
return_tensors="pt",
|
| 200 |
+
padding="max_length",
|
| 201 |
+
truncation=True,
|
| 202 |
+
max_length=512,
|
| 203 |
+
)
|
| 204 |
+
enc = {k: v.to(accelerator.device) for k, v in enc.items()}
|
| 205 |
+
enc["labels"] = enc["input_ids"].clone()
|
| 206 |
+
|
| 207 |
+
outputs = lora_module(**enc)
|
| 208 |
+
loss = getattr(outputs, "loss", None)
|
| 209 |
+
if loss is None:
|
| 210 |
+
logits = outputs.logits if hasattr(outputs, "logits") else outputs[0]
|
| 211 |
+
loss = torch.nn.functional.cross_entropy(
|
| 212 |
+
logits.view(-1, logits.size(-1)),
|
| 213 |
+
enc["labels"].view(-1),
|
| 214 |
+
ignore_index=tokenizer.pad_token_id
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
optimizer.zero_grad()
|
| 218 |
+
accelerator.backward(loss)
|
| 219 |
+
optimizer.step()
|
| 220 |
+
|
| 221 |
+
logs.append(f"[DEBUG] Step {step_counter}, Loss: {loss.item():.6f}")
|
| 222 |
+
step_counter += 1
|
| 223 |
+
yield "\n".join(logs[-10:]), step_counter / total_steps
|
| 224 |
+
|
| 225 |
+
# --- Save LoRA ---
|
| 226 |
+
Path(output_dir).mkdir(parents=True, exist_ok=True)
|
| 227 |
+
lora_module.save_pretrained(output_dir)
|
| 228 |
+
yield f"[INFO] β
LoRA saved to {output_dir}\n", 0.95
|
| 229 |
+
|
| 230 |
+
# --- Auto Upload to HF ---
|
| 231 |
+
repo_id = repo_id or os.environ.get("HF_UPLOAD_REPO")
|
| 232 |
+
token = os.environ.get("HF_TOKEN")
|
| 233 |
+
|
| 234 |
+
if repo_id and token:
|
| 235 |
+
yield f"[INFO] Uploading adapter to {repo_id}...\n", 0.97
|
| 236 |
+
try:
|
| 237 |
+
create_repo(repo_id, repo_type="model", exist_ok=True, token=token)
|
| 238 |
+
upload_folder(folder_path=output_dir, repo_id=repo_id, repo_type="model", token=token)
|
| 239 |
+
yield f"[INFO] β
Uploaded successfully: https://huggingface.co/{repo_id}\n", 1.0
|
| 240 |
+
except Exception as e:
|
| 241 |
+
yield f"[ERROR] Upload failed: {e}\n", 1.0
|
| 242 |
+
else:
|
| 243 |
+
yield f"[INFO] Skipping upload β repo_id or token not provided.\n", 1.0
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
def upload_adapter(local, repo_id):
|
| 247 |
+
token = os.environ.get("HF_TOKEN")
|
| 248 |
+
if not token:
|
| 249 |
+
raise RuntimeError("HF_TOKEN missing")
|
| 250 |
+
create_repo(repo_id, exist_ok=True)
|
| 251 |
+
upload_folder(local, repo_id=repo_id, repo_type="model", token=token)
|
| 252 |
+
return f"https://huggingface.co/{repo_id}"
|
| 253 |
+
|
| 254 |
+
# ---------------- Gradio UI ----------------
|
| 255 |
+
def run_ui():
|
| 256 |
+
with gr.Blocks() as demo:
|
| 257 |
+
gr.Markdown("# π Universal Dynamic LoRA Trainer (Gemma LLM)")
|
| 258 |
+
|
| 259 |
+
with gr.Row():
|
| 260 |
+
base_model = gr.Textbox(label="Base model", value="google/gemma-3-4b-it")
|
| 261 |
+
dataset = gr.Textbox(label="Dataset folder or HF repo", value="rahul7star/prompt-enhancer-dataset-01")
|
| 262 |
+
csvname = gr.Textbox(label="CSV/Parquet file", value="train-00000-of-00001.csv")
|
| 263 |
+
short_col = gr.Textbox(label="Short prompt column", value="short_prompt")
|
| 264 |
+
long_col = gr.Textbox(label="Long prompt column", value="long_prompt")
|
| 265 |
+
out = gr.Textbox(label="Output dir", value="./adapter_out")
|
| 266 |
+
repo = gr.Textbox(label="Upload HF repo (optional)", value="rahul7star/gemma-3-270m-ccebc0")
|
| 267 |
+
|
| 268 |
+
with gr.Row():
|
| 269 |
+
batch_size = gr.Number(value=1, label="Batch size")
|
| 270 |
+
num_workers = gr.Number(value=0, label="DataLoader num_workers")
|
| 271 |
+
r = gr.Number(value=8, label="LoRA rank")
|
| 272 |
+
a = gr.Number(value=16, label="LoRA alpha")
|
| 273 |
+
ep = gr.Number(value=1, label="Epochs")
|
| 274 |
+
lr = gr.Number(value=1e-4, label="Learning rate")
|
| 275 |
+
max_records = gr.Number(value=1000, label="Max training records")
|
| 276 |
+
|
| 277 |
+
logs = gr.Textbox(label="Logs (streaming)", lines=25)
|
| 278 |
+
|
| 279 |
+
def launch(bm, ds, csv, sc, lc, out_dir, batch, num_w, r_, a_, ep_, lr_, max_rec, repo_):
|
| 280 |
+
gen = train_lora_stream(
|
| 281 |
+
bm, ds, csv, [sc, lc], out_dir,
|
| 282 |
+
epochs=int(ep_), lr=float(lr_), r=int(r_), alpha=int(a_),
|
| 283 |
+
batch_size=int(batch), num_workers=int(num_w),
|
| 284 |
+
max_train_records=int(max_rec)
|
| 285 |
+
)
|
| 286 |
+
for item in gen:
|
| 287 |
+
if isinstance(item, tuple):
|
| 288 |
+
text = item[0]
|
| 289 |
+
else:
|
| 290 |
+
text = item
|
| 291 |
+
yield text
|
| 292 |
+
|
| 293 |
+
if repo_:
|
| 294 |
+
link = upload_adapter(out_dir, repo_)
|
| 295 |
+
yield f"[INFO] Uploaded to {link}\n"
|
| 296 |
+
|
| 297 |
+
btn = gr.Button("π Start Training")
|
| 298 |
+
btn.click(fn=launch,
|
| 299 |
+
inputs=[base_model, dataset, csvname, short_col, long_col, out,
|
| 300 |
+
batch_size, num_workers, r, a, ep, lr, max_records, repo],
|
| 301 |
+
outputs=[logs],
|
| 302 |
+
queue=True)
|
| 303 |
+
|
| 304 |
+
return demo
|
| 305 |
+
|
| 306 |
+
if __name__ == "__main__":
|
| 307 |
+
run_ui().launch(server_name="0.0.0.0", server_port=7860, share=True)
|