import gc import os import torch import torch.nn as nn import torch.optim as optim import tempfile import gradio as gr from datasets import load_dataset from transformers import AutoTokenizer, AutoModel from flashpack import FlashPackMixin from huggingface_hub import Repository from typing import Tuple from sklearn.model_selection import train_test_split device = torch.device("cpu") torch.set_num_threads(4) print(f"🔧 Using device: {device} (CPU-only)") # ============================================================ # 1️⃣ Model # ============================================================ class GemmaTrainer(nn.Module, FlashPackMixin): def __init__(self, input_dim: int, hidden_dim: int = 1024, output_dim: int = 1536): super().__init__() self.fc1 = nn.Linear(input_dim, hidden_dim) self.relu = nn.ReLU() self.fc2 = nn.Linear(hidden_dim, hidden_dim) self.fc3 = nn.Linear(hidden_dim, output_dim) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.relu(x) x = self.fc3(x) return x # ============================================================ # 2️⃣ Encoder with batch mean+max pooling # ============================================================ def build_encoder(model_name="gpt2", max_length=128): tokenizer = AutoTokenizer.from_pretrained(model_name) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token embed_model = AutoModel.from_pretrained(model_name).to(device) embed_model.eval() @torch.no_grad() def encode_batch(prompts: list, batch_size=16) -> torch.Tensor: embeddings = [] for i in range(0, len(prompts), batch_size): batch = prompts[i:i+batch_size] inputs = tokenizer(batch, return_tensors="pt", truncation=True, padding="max_length", max_length=max_length).to(device) last_hidden = embed_model(**inputs).last_hidden_state mean_pool = last_hidden.mean(dim=1) max_pool, _ = last_hidden.max(dim=1) batch_emb = torch.cat([mean_pool, max_pool], dim=1) embeddings.append(batch_emb.cpu()) return torch.vstack(embeddings) return tokenizer, embed_model, encode_batch # ============================================================ # 3️⃣ Push model to HF # ============================================================ def push_flashpack_model_to_hf(model, hf_repo: str): logs = [] with tempfile.TemporaryDirectory() as tmp_dir: logs.append(f"📂 Using temporary directory: {tmp_dir}") repo = Repository(local_dir=tmp_dir, clone_from=hf_repo, use_auth_token=True) pack_path = os.path.join(tmp_dir, "model.flashpack") model.save_flashpack(pack_path, target_dtype=torch.float32) readme_path = os.path.join(tmp_dir, "README.md") with open(readme_path, "w") as f: f.write("# FlashPack Model\nThis repo contains a FlashPack model trained for short→long prompt mapping.") repo.push_to_hub() logs.append(f"✅ Model pushed to Hugging Face repo: {hf_repo}") return logs # ============================================================ # 4️⃣ Train with train/test split & detailed logging # ============================================================ def train_flashpack_model( dataset_name="rahul7star/prompt-enhancer-dataset", max_encode=1000, hidden_dim=1024, hf_repo="rahul7star/FlashPack", push_to_hub=True, test_split=0.1, batch_size=32, max_epochs=50, target_test_loss=0.01 ) -> Tuple[GemmaTrainer, object, object, object, torch.Tensor]: print("📦 Loading dataset...") dataset = load_dataset(dataset_name, split="train") limit = min(max_encode, len(dataset)) dataset = dataset.select(range(limit)) print(f"⚡ Using {len(dataset)} prompts for training") short_prompts = [item["short_prompt"] for item in dataset] long_prompts = [item["long_prompt"] for item in dataset] # Split train_short, test_short, train_long, test_long = train_test_split( short_prompts, long_prompts, test_size=test_split, random_state=42 ) print(f"🔹 Train size: {len(train_short)}, Test size: {len(test_short)}") tokenizer, embed_model, encode_batch = build_encoder("gpt2", max_length=128) # Encode print("⚡ Encoding training prompts...") train_short_emb = encode_batch(train_short) train_long_emb = encode_batch(train_long) print(f"✅ Train embeddings shape: {train_short_emb.shape}, {train_long_emb.shape}") print("⚡ Encoding test prompts...") test_short_emb = encode_batch(test_short) test_long_emb = encode_batch(test_long) print(f"✅ Test embeddings shape: {test_short_emb.shape}, {test_long_emb.shape}") input_dim = train_short_emb.shape[1] output_dim = train_long_emb.shape[1] model = GemmaTrainer(input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim).to(device) criterion = nn.CosineSimilarity(dim=1) optimizer = optim.Adam(model.parameters(), lr=1e-3) n_train = train_short_emb.shape[0] print("🚀 Training model...") for epoch in range(max_epochs): model.train() epoch_loss = 0.0 perm = torch.randperm(n_train) for start in range(0, n_train, batch_size): idx = perm[start:start+batch_size] inputs = train_short_emb[idx].to(device) targets = train_long_emb[idx].to(device) optimizer.zero_grad() outputs = model(inputs) loss = 1 - criterion(outputs, targets).mean() loss.backward() optimizer.step() epoch_loss += loss.item() * inputs.size(0) epoch_loss /= n_train # Evaluate on test model.eval() with torch.no_grad(): test_outputs = model(test_short_emb.to(device)) test_loss = (1 - criterion(test_outputs, test_long_emb.to(device)).mean()).item() print(f"Epoch {epoch+1}/{max_epochs} → Train loss: {epoch_loss:.6f}, Test loss: {test_loss:.6f}") # Check if model is perfect enough if test_loss <= target_test_loss: print(f"✅ Target test loss reached ({test_loss:.6f}) – stopping training early.") break # Push to HF if trained well logs = [] if push_to_hub and test_loss <= target_test_loss: logs = push_flashpack_model_to_hf(model, hf_repo) for log in logs: print(log) elif push_to_hub: print(f"⚠️ Test loss too high ({test_loss:.6f}); skipping HF upload.") return model, dataset, embed_model, tokenizer, train_long_emb # ============================================================ # 5️⃣ Load or train # ============================================================ def get_flashpack_model(hf_repo="rahul7star/FlashPack"): try: print(f"🔁 Attempting to load FlashPack model from {hf_repo}") model = GemmaTrainer.from_flashpack(hf_repo) model.eval() tokenizer, embed_model, encode_batch = build_encoder("gpt2", max_length=128) return model, tokenizer, embed_model except Exception as e: print(f"⚠️ Load failed: {e}") print("⏬ Training a new FlashPack model locally...") return train_flashpack_model(hf_repo=hf_repo) # ============================================================ # 6️⃣ Load or train # ============================================================ model, tokenizer, embed_model, dataset, long_embeddings = get_flashpack_model() # ============================================================ # 7️⃣ Inference helpers # ============================================================ @torch.no_grad() def encode_for_inference(prompt: str) -> torch.Tensor: inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding="max_length", max_length=128).to(device) last_hidden = embed_model(**inputs).last_hidden_state mean_pool = last_hidden.mean(dim=1) max_pool, _ = last_hidden.max(dim=1) return torch.cat([mean_pool, max_pool], dim=1).cpu() def enhance_prompt(user_prompt: str, temperature: float, max_tokens: int, chat_history): chat_history = chat_history or [] short_emb = encode_for_inference(user_prompt) mapped = model(short_emb.to(device)).cpu() sims = (long_embeddings @ mapped.t()).squeeze(1) long_norms = long_embeddings.norm(dim=1) mapped_norm = mapped.norm() sims = sims / (long_norms * (mapped_norm + 1e-12)) best_idx = int(sims.argmax().item()) enhanced_prompt = dataset[best_idx]["long_prompt"] chat_history.append({"role": "user", "content": user_prompt}) chat_history.append({"role": "assistant", "content": enhanced_prompt}) return chat_history # ============================================================ # 8️⃣ Gradio UI # ============================================================ with gr.Blocks(title="Prompt Enhancer – FlashPack (CPU)", theme=gr.themes.Soft()) as demo: gr.Markdown( """ # ✨ Prompt Enhancer (FlashPack mapper) Enter a short prompt, and the model will **expand it with details and creative context**. (CPU-only mode.) """ ) with gr.Row(): chatbot = gr.Chatbot(height=400, label="Enhanced Prompts", type="messages") with gr.Column(scale=1): user_prompt = gr.Textbox(placeholder="Enter a short prompt...", label="Your Prompt", lines=3) temperature = gr.Slider(0.0, 1.0, value=0.7, step=0.05, label="Temperature") max_tokens = gr.Slider(32, 256, value=128, step=16, label="Max Tokens") send_btn = gr.Button("🚀 Enhance Prompt", variant="primary") clear_btn = gr.Button("🧹 Clear Chat") send_btn.click(enhance_prompt, [user_prompt, temperature, max_tokens, chatbot], chatbot) user_prompt.submit(enhance_prompt, [user_prompt, temperature, max_tokens, chatbot], chatbot) clear_btn.click(lambda: [], None, chatbot) if __name__ == "__main__": demo.launch(show_error=True)